

Corporate Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http: / /www.cisco.com
Tel: 408 526-4000
 800 553-NETS (6387)
Fax: 408 526-4100

Customer Order Number: DOC-7207-01=
Text Part Number: OL-7207-01

Service Control Application
Suite for Broadband
API Programmer's Guide
Ver. 2.5.5

OL-7207-01

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED
WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED
WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The following information is for FCC compliance of Class A devices: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15
of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment
generates, uses, and can radiate radio-frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference, in which case users will be required to correct the interference at their own expense.

The following information is for FCC compliance of Class B devices: The equipment described in this manual generates and may radiate radio-frequency energy. If it is not installed in
accordance with Cisco’s installation instructions, it may cause interference with radio and television reception. T his equipment has been tested and found to comply with the limits for a
Class B digital device in accordance with the specifications in part 15 of the FCC rules. These specifications are designed to provide reasonable protection against such interference in a
residential installation. However, there is no guarantee that interference will not occur in a particular installation.

Modifying the equipment without Cisco’s written authorization may result in the equipment no longer complying with FCC requirements for Class A or Class B digital devices. In that
event, your right to use the equipment may be limited by FCC regulations, and you may be required to correct any interference to radio or television communications at your own
expense.

You can determine whether your equipment is causing interference by turning it off. If the interference stops, it was probably caused by the Cisco equipment or one of its peripheral
devices. If the equipment causes interference to radio or television reception, try to correct the interference by using one or more of the following measures:

• Turn the television or radio antenna until the interference stops.

• Move the equipment to one side or the other of the television or radio.

• Move the equipment farther away from the television or radio.

• Plug the equipment into an outlet that is on a different circuit from the television or radio. (That is, make certain the equipment and the television or radio are on circuits controlled
by different circuit breakers or fuses.)

Modifications to this product not authorized by Cisco Systems, Inc. could void the FCC approval and negate your authority to operate the product.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version
of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL
FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED ORIMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE
PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILTY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

CCSP, the Cisco Square Bridge logo, Follow Me Browsing, and StackWise are trademarks of Cisco Systems, Inc.; Changing the Way We Work, Live, Play, and Learn, and iQuick Study
are service marks of Cisco Systems, Inc.; and Access Registrar, Aironet, ASIST, BPX, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, Cisco, the Cisco Certified Internetwork
Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Empowering the Internet Generation, Enterprise/Solver, EtherChannel,
EtherFast, EtherSwitch, Fast Step, FormShare, GigaDrive, GigaStack, HomeLink, Internet Quotient, IOS, IP/TV, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, LightStream,
Linksys, MeetingPlace, MGX, the Networkers logo, Networking Academy, Network Registrar, Packet, PIX, Post-Routing, Pre-Routing, ProConnect, RateMUX, ScriptShare, SlideCast,
SMARTnet, StrataView Plus, SwitchProbe, TeleRouter, The Fastest Way to Increase Your Internet Quotient, TransPath, and VCO are registered trademarks of Cisco Systems, Inc. and/or
its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between
Cisco and any other company. (0501R)

Printed in the USA on recycled paper containing 10% postconsumer waste.

Service Control Application Suite for Broadband API Programmer's Guide Ver. 2.5.5

Copyright © 2002-2005 Cisco Systems, Inc.
All rights reserved.

SCAS for Broadband API Programmer's Guide

OL-7207-01 i

Introduction v
Audience v
Purpose vi
Document Content vii
Document Conventions vii
Related Publications viii
Obtaining Technical Assistance viii

Cisco TAC Website viii
Opening a TAC Case viii
TAC Case Priority Definitions ix

 Overview 1-1
The Cisco Service Control Concept 1-2

Service Control Capabilities 1-2
The SCE Platform 1-3

 The Service Control Solution 2-1
System Components 2-1
Subscribers and Subscriber Modes 2-3

Subscriber-less mode 2-3
Anonymous subscriber mode 2-4
Static Subscriber Mode 2-4
Subscriber-aware mode – Dynamic Subscribers 2-4
Subscriber Modes – Summary 2-5

Service Configuration 2-5
SCAS BB Console 2-6
Service Configuration Utility 2-6
SCAS BB Service Configuration APIs 2-7

C O N T E N T S

 Contents

 Service Control Application Suite for Broadband API Programmer's Guide

ii OL-7207-01

 System Architecture for Developers 3-1
Integration Factors and Motivation 3-1
Essential Components 3-2

SCE Platform 3-3
smartSUB Manager 3-3
Collection Manager 3-4

SCAS BB Licenses 3-4
Integration Points 3-5

Service Configuration API 3-6
SCAS Reporter Command Line Interface 3-6
Flat Files 3-6

Flow of Information 3-7

 Service Configuration Entities 4-1
Logical Entities 4-2
Service Configurations 4-2
Services and Service Elements 4-3
Protocols 4-4
Dynamic Signatures 4-5
Initiating Side 4-5
Lists 4-6
Rules 4-6
Packages 4-7
Global Controllers 4-8
Subscriber BW Controllers 4-8
Subscriber Quota Buckets 4-9

 Service Configuration API 5-1
Overview of Service Configuration API 5-1
SCAS API Base Classes 5-2
SCAS Client/Server Connectivity 5-2

Including the SCAS Libraries 5-3
Connecting to the SCE Platform 5-3

Managing Service Configurations with SCAS Service Configuration API 5-4
Retrieving and Applying Service Configurations 5-5

Contents

SCAS for Broadband API Programmer's Guide

OL-7207-01 iii

Importing, Exporting, and Creating Service Configurations 5-6
Lists 5-7
Protocols 5-8
Service and Service Elements 5-11
Packages 5-13

Example - Adding a Service and Applying a Service Configuration 5-22

 Subscriber Integration 6-1
Subscriber Modes 6-1
Subscriber-less Mode 6-2
Anonymous Subscriber Mode 6-3
Static Subscriber-Aware Mode 6-3
Dynamic Subscriber-Aware Mode and smartSUB Manager (SM) 6-4

SM General Functions 6-4
Pull-mode 6-4
Subscriber State 6-5
Subscriber-Integration: PRPC Protocol 6-6
Subscriber-Integration: CNR (DHCP) Plug-in 6-6

 Quota Provisioning API 7-1
External Quota Provisioning 7-2

Service Configuration for External Quota Provisioning 7-2
Quota Bucket States 7-3

Quota Provisioning Life Cycle 7-3
Limitations 7-4
Installing the External Quota Provisioning APIs 7-4
QP API (Java) Methods 7-5

addSubscriberQuota 7-5
addSubscriberQuota 7-6
getSubscriberQuota 7-6
setSubscriberQuota 7-7

QP API (Java) Code Examples 7-8
QP API (C) Methods 7-9

addQuota 7-10
getRemainingQuota 7-10

 Contents

 Service Control Application Suite for Broadband API Programmer's Guide

iv OL-7207-01

setQuota 7-10
QP API (C) Code Examples 7-11
Error Codes and Exception Handling 7-14

Quota Provisioning API Error Codes 7-14
Managing Exceptions in the Java API 7-14
Managing Error Codes in the C/C++ API 7-15

 Reporter Command Line interface 8-1
Overview of Reporter Command Line Interface 8-1
Syntax and Usage 8-1

Command-Line Usage 8-2
Command-Line Syntax 8-2
Command-Line Options 8-2
Command-File Usage 8-3
Command-File Syntax 8-3

 Glossary of Terms 1

 Index 1

Service Control Application Suite for Broadband API Programmer's Guide

OL-7207-01 v

This guide explains how to use and write programs using the set of APIs of the SCAS BB
application.

Audience
This guide is written for experienced Java programmers. Working knowledge of network
protocols and topologies is assumed.

The SCAS BB developer can use the SCAS Service Configuration API classes, the SCAS
Reporter Command-line Interface, and the maintenance scripts, database scripts, and other SCAS
BB tools for creating value-added applications, to integrate with existing hardware and software
on the provider’s network, and to provide value-added software solutions and services.

Introduction

Introduction

 Purpose

 Service Control Application Suite for Broadband API Programmer's Guide

vi OL-7207-01

Purpose
The Service Control Application Suite for Broadband API Guide explains how to use and write
programs using Service Control technology and solution, which enables Service Providers (SPs)
to monitor and provision value-added services for their network subscribers.

The Service Control solution, based on the Service Control Engine Platform (SCE platform),
offers a flexible and simple-to-use environment to service providers for performing detailed
network analysis, traffic shaping and prioritization, and transaction-level control, all at wire-speed
rates and in a fully programmable and extendable framework. These capabilities can be used by
the SP to understand how the network is used, develop advanced usage-based billing schemes,
control network abuse, and offer tiered-access services.

The SCAS BB API technology enables SPs to easily develop and deploy networked Java
applications that hide the underlying layers of complexity and provide network users with
differentiated services. SPs can enhance and augment the Service Control solution, by integrating
it with new or existing OSS and back-office systems. The APIs can also be used to develop and
deploy a rich set of functionality that hide the underlying layers of complexity and provide
network users with differentiated services.

After working through the chapters in this guide you will be able to develop applications using the
SCAS BB API. The SCAS BB APIs are implemented in Java, offering a simple, platform-
independent, and interoperable programming environment.

To use the SCAS BB API software product, you (or the system administrator) must have
previously performed certain administrative tasks, such as installing the Service Control system
hardware and software on the provider network. Note that the SP network administrator is
responsible for certain aspects of the work; for example, changing IP addresses or adding
additional computers and Service Control hardware devices to the network.

Note To develop applications using the SCAS BB Service Configuration API, you must install and use JDK
version 1.3.

Introduction

Document Content

SCAS for Broadband API Programmer's Guide

OL-7207-01 vii

Document Content
This manual contains the following chapters:

Chapter 1, Overview, provides a general overview of the Service Control solution and the Service
Control concept.

Chapter 2, The Service Control Solution, describes certain aspects of Service Control technology
and solution: system components, subscribers and subscriber modes, and service configuration.

Chapter 3 System Architecture for Developers, provides an overview of the Service Control
Application Suite for Broadband architecture for programmers.

Chapter 4, Service Configuration Entities, provides definitions and outlines the principles for
developing a Service Control Application Suite for Broadband application.

Chapter 5, Service Configuration API, explains how the SCAS BB Service Configuration API is
used for automating the SCAS BB service configuration activities.

Chapter 6, Subscriber Integration, discusses subscriber integration in a Service Control
Application Suite for Broadband application.

Chapter 7, Quota Provisioning API, describes the External Quota Provisioning (QP) API for Java
and C.

Chapter 8, Reporter Command Line Interface, explains how the Reporter Command Line
Interface may be used to generate reports.

Glossary

Index

Document Conventions
The following typographic conventions are used in this guide:
Typeface or Symbol Meaning

Italics References, new terms, field names, and placeholders.

Bold Names of menus, options, and command buttons.

Courier System output shown on the computer screen in the Telnet session.

Courier Bold CLI code typed in by the user in examples.

Courier Italic Required parameters for CLI code.

[italic in
brackets]

Optional parameters for CLI code.

Note.

Notes contain important information.

Warning.

Warning means danger of bodily injury or of damage to equipment.

Introduction

 Related Publications

 Service Control Application Suite for Broadband API Programmer's Guide

viii OL-7207-01

Related Publications
The SCAS BB API Guide should be used in conjunction with SCE Platform user guides (SCE1000
User Guide; SCE3000 User Guides) and the other Management Suite user guides (Collection
Manager User Guide, SCAS BB User Guide, smartSUB User Guide,and SM API Guides).

Obtaining Technical Assistance
For all customers, partners, resellers, and distributors who hold valid Cisco service contracts, the
Cisco Technical Assistance Center (TAC) provides 24-hour, award-winning technical support
services, online and over the phone. Cisco.com features the Cisco TAC website as an online
starting point for technical assistance.

Cisco TAC Website
The Cisco TAC website (http://www.cisco.com/tac (http://www.cisco.com/tac)) provides online
documents and tools for troubleshooting and resolving technical issues with Cisco products and
technologies. The Cisco TAC website is available 24 hours a day, 365 days a year.

Accessing all the tools on the Cisco TAC website requires a Cisco.com user ID and password. If
you have a valid service contract but do not have a login ID or password, register at this URL:

http://tools.cisco.com/RPF/register/register.do (http://tools.cisco.com/RPF/register/register.do)

Opening a TAC Case
The online TAC Case Open Tool (http://www. cisco.com/tac/caseopen
(http://www.cisco.com/tac/caseopen)) is the fastest way to open P3 and P4 cases. (Your network is
minimally impaired or you require product information). After you describe your situation, the
TAC Case Open Tool automatically recommends resources for an immediate solution.

If your issue is not resolved using these recommendations, your case will be assigned to a Cisco
TAC engineer.

For P1 or P2 cases (your production network is down or severely degraded) or if you do not have
Internet access, contact Cisco TAC by telephone. Cisco TAC engineers are assigned immediately
to P1 and P2 cases to help keep your business operations running smoothly.

To open a case by telephone, use one of the following numbers:

Asia-Pacific: +61 2 8446 7411 (Australia: 1 800 805 227)

EMEA: +32 2 704 55 55

USA: 1 800 553-2447

For a complete listing of Cisco TAC contacts, go to this URL:

http://www.cisco.com/warp/public/687/Directory/DirTAC.shtml
(http://www.cisco.com/warp/public/687/Directory/DirTAC.shtml)

http://www.cisco.com/tac
http://tools.cisco.com/RPF/register/register.do
http://www.cisco.com/tac/caseopen
http://www.cisco.com/warp/public/687/Directory/DirTAC.shtml

Introduction

Obtaining Technical Assistance

SCAS for Broadband API Programmer's Guide

OL-7207-01 ix

TAC Case Priority Definitions
To ensure that all cases are reported in a standard format, Cisco has established case priority
definitions.

• Priority 1 (P1)—Your network is “down” or there is a critical impact to your business
operations. You and Cisco will commit all necessary resources around the clock to resolve the
situation.

• Priority 2 (P2)—Operation of an existing network is severely degraded, or significant aspects
of your business operation are negatively affected by inadequate performance of Cisco
products. You and Cisco will commit full-time resources during normal business hours to
resolve the situation.

• Priority 3 (P3)—Operational performance of your network is impaired, but most business
operations remain functional. You and Cisco will commit resources during normal business
hours to restore service to satisfactory levels.

• Priority 4 (P4)—You require information or assistance with Cisco product capabilities,
installation, or configuration. There is little or no effect on your business operations.

SCAS for Broadband API Programmer's Guide

OL-7207-01 1-1

This chapter provides a general overview of the Service Control concept. It describes the
functional topology of the SCE platform, and gives a general understanding of how the platform
works and how information flows through the system.

The SCE platform is designed to support observation, analysis, and control of Internet/IP traffic.
The SCE platform provides the raw data for a rich range of monitoring, analysis and traffic
control functions and tools to contribute to the Service Provider’s (SP) profitability and for
reducing its OPEX (operational expenses). It supports the Service Control applications that enable
the SP to achieve a high level of differentiation, quality of service, market segmentation abilities,
and customer satisfaction.

This chapter contains the following sections:

• The Cisco Service Control Concept 1-2

• The SCE Platform 1-3

C H A P T E R 1

Overview

Chapter 1 Overview

 The Cisco Service Control Concept

 SCAS for Broadband API Programmer's Guide

1-2 OL-7207-01

The Cisco Service Control Concept
The Cisco Service Control concept is delivered through a combination of purpose-built hardware
and specific software solutions that address various Service Control challenges faced by service
providers. The SCE Platform is designed to support observation, analysis, and control of
Internet/IP traffic.

Service Control enables service providers to create profitable new revenue streams while
capitalizing on their existing infrastructure. With the power of Service Control, service providers
have the ability to analyze, charge for, and control IP network traffic at multi-Gigabit wire line
speeds. The Cisco Service Control solution also gives service providers the tools they need to
identify and target high-margin, content-based services.

As the downturn in the telecommunications industry has shown, IP service provider business
models need to be reworked in order to make them profitable. Having spent billions of dollars to
build ever larger data links, providers have incurred massive debts and rising costs. During the
same time, access and bandwidth became a commodity where prices continually fell and profits
disappeared. Service providers now realize that they must offer value-added services to derive
more revenue from the traffic and services running on their networks. However, capturing real
profits from IP services requires more than simply running those services over data links; it
requires detailed monitoring and precision, real- time control and awareness of services as they
are delivered. Cisco provides Service Control solutions that allow the service provider to bridge
this gap.

Service Control Capabilities
At the core of the Cisco Service Control Platform stands the purpose-built network hardware
device: the Service Control Engine (SCE). Implementing a complete Service Control solution
requires that the Service Control Engine provide certain functionalities and capabilities. The
following are the core capabilities of the Cisco Service Control Engine, which support a wide
range of applications for delivering Service Control solutions:

• Subscriber and application awareness: Application-level drilling into IP traffic for real-time
understanding and controlling of usage and content at the granularity of a specific subscriber.

• Subscriber awareness: The ability to map between IP flows and a specific subscriber for
maintaining the state of each subscriber transmitting traffic through the platform, and
enforcing the appropriate policy on this subscriber traffic.

Subscriber awareness is achieved using dedicated integrations with subscriber
management repositories, such as a DHCP or a Radius server.

• Application awareness: The ability to understand and analyze traffic up to the application
protocol layer (Layer 7).

For an application protocol that is implemented using bundled flows (such as FTP, which
is implemented using Control and Data flows), the SCE Platform understands the
bundling connection between the flows and treats them accordingly.

• Stateful, real time traffic control: The ability to perform advanced control functions, including
granular BW metering and shaping, quota management and redirection, utilizing stateful real-
time traffic transaction processing. This requires highly adaptive protocol and application
level intelligence.

Chapter 1 Overview

The SCE Platform

SCAS for Broadband API Programmer's Guide

OL-7207-01 1-3

• Programmability: The ability to quickly add new protocols and easily adapt to new services
and applications in the ever-changing service provider environment. Programmability is
achieved using the SML language.

Programmability means that new services can be deployed quickly and provides an easy
upgrade path for network, application, or service growth.

• Robust and flexible back office integration: The ability to integrate with existing 3rd party
systems at the Service Provider, such as provisioning systems, subscriber repositories, billing
systems, and OSS systems. The Service Control Engine provides a set of open and well-
documented APIs that allows a quick and robust integration process.

• Scalable High-Performance Service Engines: The ability to execute all operations described
above at wire speed.

The SCE Platform
The Service Control Engine family of programmable network devices is capable of performing
stateful flow inspection of IP traffic, and controlling that traffic based on configurable rules. The
Service Control Engine is a purpose-built network device making use of ASIC components and
RISC processors to go beyond packet counting and delve deeper into the contents of network
traffic. Providing programmable, stateful inspection of bi-direction traffic flows and mapping
these flows with user ownership, the Service Control Engine platforms provide a real-time
classification of network usage. This information provides the basis of the Service Control Engine
advanced traffic control and bandwidth shaping functionality. Where most bandwidth shaper
functionality ends, the Service Control Engine provides more control and shaping options
including:

• Layer 7-3 stateful wire-speed packet inspection and classification

• Robust support for over 600 protocol/applications including:

• General: HTTP, HTTPS, FTP, TELNET, NNTP, SMTP, POP3, IMAP, WAP, and others

• P2P: FastTrack-KazaA, Gnutella, WinMX, Winny, Hotline, eDonkey, DirectConnect,
Piolet, and others

• Streaming & Multimedia: RTSP, SIP, HTTP-STREAMING, RTP/RTCP, and others

• Programmable system core for flexible reporting and bandwidth control

• Transparent network and BSS/OSS integration into existing networks

• Subscriber awareness for relating traffic and usage to specific customers

Chapter 1 Overview

 The SCE Platform

 SCAS for Broadband API Programmer's Guide

1-4 OL-7207-01

The following diagram demonstrates a deployment of an SCE Platform in the network.

Figure 1-1: SCE Platform in the Network

SCAS for Broadband API Programmer's Guide

OL-7207-01 2-1

SCAS BB (SCAS) is the Service Control solution that allows broadband service providers to gain
visibility into and control over the distribution of network resources, and thereby to optimize
traffic in accordance with their business strategies. It enables service providers to reduce network
costs, improve network performance and customer experience, and create new service-offerings
and packages.

This chapter contains the following sections:

• System Components 2-1

• Subscribers and Subscriber Modes 2-3

• Service Configuration 2-5

System Components
The Service Control Application Suite for Broadband solution consists of three main components:

• The SCE Platform: A flexible and powerful dedicated network usage monitor that is purpose-
built to analyze and report on network transactions at the application level.

For complete information regarding the installation and operation of the SCE Platform, see
the SCE 1000 and SCE 2000 User Guides.

• The smartSUB Manager (SM): A middleware software component used in cases where
dynamic binding of subscriber information and service configurations is required. The SM
manages subscriber information and provisions it in real time to multiple SCE Platforms. The
SM can store subscriber service configurations information internally, and act as a state-full
bridge between the AAA system (for example, RADIUS and DHCP) and the SCE Platforms

For complete information regarding the installation and operation of the smartSUB Manager,
see the smartSUB Manager User Guide.

• The Collection Manager (CM): An implementation of a collection system, listening in on
RDRs from one or more SCE Platforms. It collects usage information and statistics, stores
them in a bundled database, and provides a set of insightful reports from this data. The DC
also converts subscriber usage information and statistics into simple text-based files for
further processing and collection by external systems.

For complete information regarding the installation and operation of the Collection Manager,
see the Collection Manager User Guide.

C H A P T E R 2

The Service Control Solution

Chapter 2 The Service Control Solution

 System Components

 SCAS for Broadband API Programmer's Guide

2-2 OL-7207-01

Together, the SCE Platform, the Collection Manager, and the smartSUB Manager are designed to
support detailed observation, analysis, reporting, and control of IP network traffic. Note that the
Collection Manager and smartSUB Manager are optional components, and are not required in all
deployments of the solution. Sites that employ third party collection and reporting applications
and/or do not require dynamic subscriber-aware processing may not require these components.

The following figure illustrates the flow of information within the SCAS BB solution.

• Horizontal flow: Represents traffic between subscribers and IP network.

The SCE Platform monitors traffic flow.

• Vertical flow: Represents transmission of the Raw Data Records (RDRs) from the SCE
Platform to the Collection Manager.

The smartSUB Manager may be added to the control flow to provide subscriber data. This
enables the SCAS BB to conduct dynamic subscriber integrations.

Figure 2-1: Logical Components of the SCAS System

Chapter 2 The Service Control Solution

Subscribers and Subscriber Modes

SCAS for Broadband API Programmer's Guide

OL-7207-01 2-3

Subscribers and Subscriber Modes
One of the fundamental entities in the SCAS BB solution is a subscriber. A subscriber is the most-
granular entity that the SCAS BB solution can individually monitor, account, and enforce a
service configuration on. In the most granular instance of the SCAS BB system, a subscriber is an
actual customer of the service-provider on whom an individual service configuration is
implemented. However, it is also possible to use the SCAS BB solution to monitor and control
traffic at a higher granularity, such as when monitoring controlling traffic by subnets or
aggregation devices.

One of the most important decisions to be made when designing a SCAS BB solution is what will
be defined as a subscriber in the system. This determines what subscriber-mode will be used,
which in turn determines what (if any) integrations are required, as well as what actual service
configuration to define. The following section describes the different subscriber-modes supported,
what functions are supported for each mode, and what prerequisites and required components are
needed.

SCAS BB supports the following subscriber modes:

• Subscriber-less mode: No subscribers are defined.

• Anonymous subscriber mode: IP addresses are controlled and monitored individually. The
SCE Platform automatically identifies IP addresses as they are used and assigns them the
default service configuration.

• Subscriber-aware mode – Static Subscribers: Incoming IP addresses are bound and
grouped statically into subscribers, as configured by the system operator.

• Subscriber-aware mode – Dynamic Subscribers: subscriber information is dynamically
bound to the IP address currently in use by the subscriber through an integration with the
system that assigns IP addresses to subscribers (RADIUS, DHCP). Service configuration
information either is administered to the Service Contro solution directly, or is also
provisioned dynamically though an integration.

Subscriber-less mode
Subscriber-less mode is the choice for sites where control and level analysis functions are
required only at a global device resolution. It can be used, for example, to monitor the total
amount of P2P traffic over the link.

Since subscriber-less mode requires no integration, the smartSUB Manager component is not
required. Note that, since subscriber-less mode is not influenced by the number of subscribers or
inbound IP addresses, the total amount of subscribers utilizing the monitored link is unlimited
from the perspective of the SCE Platform.

Chapter 2 The Service Control Solution

 Subscribers and Subscriber Modes

 SCAS for Broadband API Programmer's Guide

2-4 OL-7207-01

Anonymous subscriber mode
Anonymous subscriber mode provides the means to analyze and control network traffic at a
subscriber-inbound IP address granularity Use this mode when no subscriber-differentiated
control or subscriber-level quota tracking is required, when analysis on an IP level is sufficient, or
when offline IP-address/subscriber binding can be performed. For example, it is possible to
identify which subscribers generate the most P2P traffic by identifying the top IP addresses and
correlating them to individual subscribers manually/offline via RADIUS/DHCP logs. The total
bandwidth of P2P traffic allowed for each subscriber can be limited as well.

Since anonymous mode requires no integration or static configuration of the IP addresses used,
the smartSUB Manager component is not required. Rather, ranges of IP addresses are configured
directly on the SCE Platform, for which the system will dynamically create ‘anonymous’
subscribers, using the IP address as the subscriber-name. Note that the total number of
concurrently active anonymous subscribers supported by the SCE Platform is the same as the total
number of concurrently active subscribers.

Static Subscriber Mode
Static subscriber mode binds together incoming IP addresses into groups, so that traffic from/to a
defined subscriber can be controlled as a group. For example, with this mode, all traffic from/to a
particular network subnet (used by multiple subscribers concurrently) can be defined as a ‘virtual
subscriber’ and controlled/viewed as a group.

Static subscriber mode supports cases in which the entity controlled by the Service Control
solution uses a constant IP address or address-range that does not change dynamically, such as:

• Environments where the subscriber IP address(es) do not change dynamically via DHCP,
RADIUS, etc.

• Deployments in which a group of subscribers using a common pool of IP addresses, such as
all those served by a particular CMTS, BRAS, etc., are to be managed together to provide a
shared bandwidth to the entire group.

The system supports the definition of static subscribers directly on a SCE Platform, and does not
require external management software (smartSUB Manager). This is achieved by using the SCE
Platform CLI to define the list of subscribers, their IP addresses and associated package.

Subscriber-aware mode – Dynamic Subscribers
In dynamic subscriber mode, the SCE is populated by subscriber information (OSS ID and service
configuration) that is dynamically bound to the (IP) address currently in use by the subscribers.
This provides differentiated and dynamic control per subscriber and subscriber-level analysis,
regardless of IP address in use. This mode is used to control/analyze traffic on a subscriber level
and monitor subscriber-usage, regardless of IP addresses. It also enables assigning and enforcing
different service configuration or packages for different subscribers.

In this mode, the smartSUB Manager (SM) needs to be used to perform device provisioning with
subscriber information. The SM is a server application that maintains the above association, and
provisions it to SCE Platforms in real time.

Chapter 2 The Service Control Solution

Service Configuration

SCAS for Broadband API Programmer's Guide

OL-7207-01 2-5

Subscriber Modes – Summary
The following table summarizes the different subscriber modes supported by the system.

Table 2-1 Subscriber-Mode Summary Table

Mode Features Supported Main Advantages When to Use

Subscriber-less Global (device-level)
analysis and control

No subscriber
configuration required

For global control solution or
subscriber level analysis. Examples:

• Controlling P2P uploads at
peering points

• Limiting total amount of P2P to a
fixed percentage

Anonymous
subscriber

Global analysis and
control

Individual IP address
level analysis and
control

No subscriber
configuration required

Need only to define the
subscriber IP address
ranges used

Provides subscriber-
level control without
integration

For IP level analysis or control that
is not differentiated per subscriber,
and where offline
IP-address/subscriber binding is
sufficient. Examples:

• Limiting per subscriber P2P to 64
Kbps (kilobits per second)

• Identifying top subscribers by
identifying top IP addresses and
correlating manually/offline with
RADIUS/DHCP logs

Static
Subscriber

Global Analysis and
Control

Control based on
individual IP
addresses/groups as
configured statically
to the SCE Platform

On-time static
subscriber
configuration, with no
integration
requirements

Manages subscriber
traffic in logical groups

For controlling traffic of groups of
subscribers. Example:

• Assigning a 5 Mbps (megabits per
second) limit of P2P traffic for
each group of subscribers using a
single CMTS device

Dynamic
Subscriber

Full system
functionality

Differentiated and
dynamic control per
subscriber

Subscriber-level
analysis, regardless of
IP address in use

For

• Controlling/analyzing traffic on a
subscriber level.

• Monitoring subscriber-usage,
regardless of IP addresses

• Assigning different service
configuration or packages to
different subscribers, and
changing packages dynamically

Service Configuration
Service configuration defines the way an SCE Platform analyses and controls traffic. In very
general terms, Service Configuration defines the following:

• protocol and service classification

Chapter 2 The Service Control Solution

 Service Configuration

 SCAS for Broadband API Programmer's Guide

2-6 OL-7207-01

• packages and service configuration

• bandwidth controllers

• global controllers

Service configuration is accomplished using one of the following:

• SCAS BB Console

• Service Configuration Utility

• SCAS BB APIs

Figure 2-2: Service Configuration

SCAS BB Console
The SCAS BB Console is the SCAS BB GUI, used to create, modify, and apply the service
configuration. The SCAS BB Console lets you define services, packages, protocols, bandwidth
control and other entities in the configuration. The SCAS BB Console creates a service
configuration file (.pqb), which can then be saved and/or applied to the SCE Platform(s).

You can also access the smartSUB Manager from the SCAS BB Console to manage subscribers.
In addition, you can access the Reporter feature of the Collector Manager to create and output
reports.

The SCAS BB Console is fully documented in the SCAS BB User Guide.

Service Configuration Utility
The Service Configuration Utility is a simple command line tool that can be used to apply .pqb
configuration files onto SCE Platforms, or retrieve the current configuration from an SCE
Platform and save as a pqb file. The tool can be installed and executed on either Windows or
Solaris environments, and configures SCE Platforms with the service configuration in a .pqb file.

The Service Configuration Utility (servconf) helps with the automation of applying/retrieving
service configurations, by providing a command-line interface for performing these operations.

The Service Configuration Utility is fully documented in the SCAS BB User Guide.

Chapter 2 The Service Control Solution

Service Configuration

SCAS for Broadband API Programmer's Guide

OL-7207-01 2-7

SCAS BB Service Configuration APIs
The SCAS BB Service Configuration API is a set of Java classes used for programming and
managing Service Configurations, and for applying these Service Configurations to the SCE
Platforms. In addition, applications using the SCAS API can be integrated with third-party
systems, allowing service providers to automate and simplify management and operational tasks.

SCAS for Broadband API Programmer's Guide

OL-7207-01 3-1

This chapter:

• Outlines the SCAS BB system architecture for SCAS developers.

• Describes the main components of the SCAS BB hardware and software.

• Introduces SCAS API programming definitions and concepts.

• Describes the different levels of licensing for SCAS BB.

• Describes the connections between the SCAS BB system’s various logical entities.

• Describes information flow between the SCAS BB hardware and software components.

The SCAS BB Java API classes provide a rich programming environment in which to develop
value-added Internet services and network traffic monitoring applications for SPs.

This chapter contains the following sections:

• Integration Factors and Motivation 3-1

• Essential Components 3-2

• SCAS BB Licenses 3-4

• Integration Points 3-5

• Flow of Information 3-7

Integration Factors and Motivation
Using the SCAS API, service providers will be able to:

• Make SCAS BB part of a larger SP solution. As part of a larger SP solution, providers may
not be able to allow dual operation and maintenance of similar systems. The need to integrate
more compactly, natively, and transparently with existing systems such as AAA and billing
should be satisfied.

• Provide added revenue sources for business growth. By utilizing the API’s programming
capabilities, sophisticated and advanced customized applications and solutions can be
delivered. SPs can develop applications for in-house systems, or software applications and
services for external consumption. For example, if an SP wants to develop a web interface
through which customers can select their preferred service package, the API provides the SP
with the software platform and programming tools with which to create such an application.

C H A P T E R 3

System Architecture for Developers

Chapter 3 System Architecture for Developers

 Essential Components

 SCAS for Broadband API Programmer's Guide

3-2 OL-7207-01

• Simplify operational tasks.

• Keep legacy systems GUI look and feel.

In addition, when the SCAS BB system is integrated into the provider’s network, it is not
necessary to interfere with or to displace existing hardware and infrastructure. The SCAS BB
system comes with its hardware and software pre-installed, and is ready to be enabled and
deployed on the provider’s network with minimum configuration.

Essential Components
Running on a Management LAN, the SCAS BB system components are situated between the
network subscriber and the Internet.

The SCAS BB system is responsible for performing three major functions on the network flow:

• Analyzing Network- Analyzes network traffic and determines the type of transaction passing
through the network.

• Analyzing Subscribers - Analyzes the characteristics of the subscriber or organization whose
transaction is passing through the network.

• Enforcing Service Configuration - Enforces the Service Configuration on the network based
upon its traffic analysis. It enables provisioning of network services, differentiating between
subscribers.

The SCAS BB system’s core components include:

• SCE Platforms (SCE 1000 and SCE2 000)

• smartSUB Manager (SM)

• (Optional) One or more Collection Manager systems (CMs)

• SCAS Clients (SCAS BB Console, SCAS smartSUB Manager, SCAS Reporter)

Chapter 3 System Architecture for Developers

Essential Components

SCAS for Broadband API Programmer's Guide

OL-7207-01 3-3

SCE Platform
The SCE Platform is a purpose-built service component and active enforcing system designed for
enhancing service providers and backbone carrier networks. By identifying, classifying, and
manipulating complex traffic flows at wire-speed, the SCE Platform transforms simple transport
networks into differentiated service delivery infrastructures for a wide variety of value-added IP
applications, such as video streaming, VoIP, tiered services, and bilateral application-level SLAs.

The SCE Platform seamlessly interfaces with existing network elements—including routers,
switches, aggregators, subscriber management devices, and operational support systems—using
industry standard interfaces and communications protocols.

The need to guarantee that packets passing through the network are processed at the rate they
arrive makes it necessary to provide a custom-made hardware solution.

The SCE Platform comes in three models: SCE 1000, SCE 2000 4xGBE, and SCE 2000 4/8xFE.
There may be one or more of the SCE Platforms in the provider network. Within the SCE
Platforms, network transactions are analyzed and mapped to services that enforce the provider’s
policies.

In addition, the SCE Platform implements the business logic of the system solution and performs
the transaction analysis in real time. When so instructed, the SCE Platform creates a Raw Data
Record (RDR) to be sent for storage to the system’s data repository, the Collection Manager
(CM); or carries out some other operation such as bandwidth and volume control.

smartSUB Manager
The smartSUB Manager (SM) is a software solution that addresses three issues in the handling of
subscribers by the SCE Platform when operating in subscriber-aware mode:

• Capacity: The SCE Platform(s) may need to process (over time) more subscribers than it can
statically hold.

The smartSUB Manager is a repository for subscriber names and information.

• Mapping: The SCE Platform encounters flows with network IDs (IP addresses), and it
requires mapping between those network IDs and the subscriber IDs.

The smartSUB Manager database contains the network IDs that map to the subscribers.

• Location: The system may not be able to predict which SCE Platform will handle which
subscriber traffic.

The smartSUB Manager allows the system to be configured to introduce subscribers in pull
mode, and detect which SCE Platform handles which subscriber at runtime.

The SM database can function in one of two ways:

• As the only source for subscriber information: when the SM works in standalone mode.

• As a subscriber information cache: when the SM serves as a bridge between a group of SCE
devices and the customer AAA and OSS systems.

Chapter 3 System Architecture for Developers

 SCAS BB Licenses

 SCAS for Broadband API Programmer's Guide

3-4 OL-7207-01

Collection Manager
The Collection Manager (CM) is the software component that is responsible for receiving usage
records for processing, such as Raw Data Records (RDRs) from the SCE Platform. The Collection
Manager processes the RDRs and sends them to be stored in storage devices, such as in databases
or CSV (Comma Separated Value) flat files. A typical system integration may include periodical
visits to the Data Collector and processing of the stored usage files.

The Collection Manager may either reside on the server platform together with the Sybase
database to which it sends records, or they can be separated and reside on different platforms. For
sample Sybase database scripts, refer to the Collection Manager User Guide.

SCAS BB Licenses
SCAS BB offers three different levels of licensing to suit the needs of different sites:

• SCAS BB View: This is the basic form of SCAS BB. It has the following capabilities:

• Monitoring and Reporting

• No control capabilities

• SCAS BB Capacity Control: This license adds traffic control functionality. It has the
following capabilities:

• Monitoring and Reporting

• Capacity Control, for example by assigning traffic of different applications to different
Global Controllers

• One package only (default package) - no differentiation between subscribers

• Requires a key

• SCAS BB Tiered Control: This license permits the differential control of traffic flows based
on package. It has the following capabilities:

• Monitoring and Reporting

• Capacity Control

• Multiple packages - allows differentiation between subscribers; for example, by allowing
greater BW or greater daily volume quota to subscribers of a certain package

• Requires a key

To register for a higher-level license:

Step 1 From the Help menu, click License Manager.

Chapter 3 System Architecture for Developers

Integration Points

SCAS for Broadband API Programmer's Guide

OL-7207-01 3-5

The License Manager dialog appears.

Step 2 Check the Enter new license key check box.
The Customer ID and Key fields become available.

Step 3 Type your Customer ID and Key in the appropriate fields.

Step 4 Click OK.
The new license is displayed in the message band and status bar.

Figure 3-1: Displaying the New License

Integration Points
Example of integration scenarios with the SCAS BB Solution are:

• SM API - Applications integrated with the SM API may provision subscribers, assign them to
packages, and change a subscriber's package dynamically.

• Quota Provisioning API - Applications integrated with the QP API may provision quota to
subscribers, as well as query on the subscriber’s remaining quota.

Chapter 3 System Architecture for Developers

 Integration Points

 SCAS for Broadband API Programmer's Guide

3-6 OL-7207-01

• Service Configuration API - Applications integrated with the Service Configuration API
may perform list updates, Service Configuration editing, and deployment scripts.

• Reporter Command Line Interface - Applications integrated with the SCAS Reporter
Command Line Interface can visit the SQL database periodically to execute batch queries and
produce image files to be used in third-party usage billing systems or statistical analysis
packages.

• Flat Files - CSV (Comma Separated Value) flat files may be used for integrating their data
with third-party billing systems or statistical analysis packages.

Service Configuration API
The Service Configuration API is a set of Java classes used to program and manage Service
Configuration, and to configure the functionality of the SCE Platforms responsible for enforcing
the Service Configuration business rules.

Using the Service Configuration API, GUI applications can be developed for enhancing the
capabilities provided by the Service Configuration Management Module. Through server
applications created with the Service Configuration API, SPs can roll out network solutions and
deliver customized applications, providing value-added services that satisfy customer needs.

Besides the aforementioned advantages, applications using the Service Configuration API can be
integrated with third-party systems.

SCAS Reporter Command Line Interface
The SCAS Reporter Command Line Interface is the SCAS BB system software counterpart of the
Service Control Reporter GUI client. It is responsible for executing SQL queries to the Collection
Manager and for filtering the output to generate network transaction usage reports in tabular or
chart format.

The SCAS Reporter Command Line Interface can be executed as a standalone program from the
command line, or spawned from various applications. In addition, the SCAS Reporter Command
Line Interface provides all the capabilities of the Service Contol Reporter GUI client, and can
readily be integrated and used from various systems.

Flat Files
Applications using Comma Separated Value (CSV) flat files may apply their own formats and
templates for reviewing and using the data. For example, applications such as Excel are capable
of importing CSV files into their spreadsheets.

Chapter 3 System Architecture for Developers

Flow of Information

SCAS for Broadband API Programmer's Guide

OL-7207-01 3-7

Flow of Information
This section describes the information flow between the various hardware and software
components of SCAS BB. The SCAS BB system consists of one or more SCE Platforms, and
software components such as the SM, Collection Manager, and other SCAS modules, which
provide each other with services. Understanding the relationships between the components and
the direction in which their data travels in the system will provide the developer with a snapshot
of the system.

The important relationships between the SCAS BB system components can be summarized as
follows:

• Retrieving a Service Configuration - Gets a copy of the active Service Configuration in the
SCE device.

Service Configuration retrieval is generally done for the purpose of performing Service
Configuration editing: a static process involving modifications to the business rules of the
provider.

• Applying a Service Configuration - The application executing the Service Configuration
API apply function call provides Service Configuration modification information that replace
the active Service Configuration in the SCE device. Once the Service Configuration transfer
has been carried out, the Service Configuration goes live and the new business rules of the
provider become active and are enforced on the network traffic.

• SCE Platforms Trigger RDRs - An SCE Platform creates an RDR as a result of an action
triggered when a system-defined condition on a subscriber’s network transaction is met. The
information contained in the RDR flows from the SCE Platform (where it was created) to the
Collection Manager, where the Collection Manager Adapter adapts and prepares the RDR to
be inserted in database tables or placed in CSV flat files, depending on how the Collection
Manager is configured.

• SCAS Reporter Execution - When a report is executed using the SCAS Reporter, either
interactively or through the Reporter Command Line Interface, an SQL query is executed
through an ODBC driver to its Sybase database. The results of the SQL query are then
translated into the format specified by the executing report, and can either be displayed or
saved in a file.

SCAS for Broadband API Programmer's Guide

OL-7207-01 4-1

This chapter:

• Provides a technical overview of the system.

• Introduces SCAS API programming definitions and concepts.

This chapter provides definitions for the main elements (Service Configuration Entities) of the
SCAS BB system, which are the building blocks of the SCAS BB Java application. An
understanding of the function of these elements is therefore a prerequisite for developing
applications that can use the full potential of the SCAS API, with its programmable objects of
subscribers, service configurations, packages, services, and rules.

This chapter contains the following sections:

• Logical Entities 4-2

• Service Configurations 4-2

• Services and Service Elements 4-3

• Protocols 4-4

• Dynamic Signatures 4-5

• Initiating Side 4-5

• Lists 4-6

• Rules 4-6

• Packages 4-7

• Global Controllers 4-8

• Subscriber BW Controllers 4-8

• Subscriber Quota Buckets 4-9

C H A P T E R 4

Service Configuration Entities

Chapter 4 Service Configuration Entities

 Logical Entities

 SCAS for Broadband API Programmer's Guide

4-2 OL-7207-01

Logical Entities
The following sections describe the logical entities that make up the SCAS BB system at the
programming granularity level. The SCAS Java API builds on these definitions to deliver robust
client/server applications. The developed applications can run over the network, or be used as
standalone applications, or be integrated into third-party systems delivered over the Internet.

These sections cover the following entities:

• Service Configuration ("Service Configurations" on page 4-2)

• Services and Service Elements (on page 4-3)

• Protocols (on page 4-4)

• Dynamic Signatures (on page 4-5)

• Initiating Side (on page 4-5)

• Lists (on page 4-6)

• Rules (on page 4-6)

• Packages (on page 4-7)

• Global Controllers (on page 4-8)

• Subscriber BW Controllers (on page 4-8)

• Subscriber Quota Buckets (on page 4-9)

Note that these entities are closely related to one another, therefore occasionally an entity is
referred to in a section that comes before the section in which the entity is fully described.

Service Configurations
A service configuration implements and enforces the business strategy and vision of the provider,
by offering the subscriber a variety of packages to choose from in order to meet the subscriber’s
personal or business needs. Packages can be created using the Service Configuration Editor, or be
custom made to the requirements of the network provider using the Service Configuration API.
The system places a limit of 64 packages and 31 services per service configuration.

Before a service configuration can be used, the service configuration needs to be propagated to
the appropriate SCE Platforms for service configuration enforcement and activation. The active
service configuration residing on the SCE Platforms enforces the service configuration by
analyzing the network traffic passing through them.

A service configuration consists of:

• Services - A service configuration contains services, such as Web Browsing, Video Streaming,
and Video Conferencing. Each service consists of transaction mappings that define how
network activity is mapped to that service.

• Packages - A service configuration contains packages, each package consisting of a set of
rules—such as bandwidth rate limit, volume limits, and admission control—defined for
different services. Each set of rules comprising a package should be tailored to be a complete
solution targeted for a different subscriber audience.

Chapter 4 Service Configuration Entities

Services and Service Elements

SCAS for Broadband API Programmer's Guide

OL-7207-01 4-3

Services and Service Elements
From a provider’s perspective, a service is a network product sold to a customer. From a
programming perspective, a service consists of one or more service elements, each element
enabling a decision regarding the service associated with a network traffic transaction type.

These transaction mappings are used by the SCE Platform for mapping each network connection
passing through it to a service. Afterward, rules can be applied to the different services for
implementing the service configuration. The classification rules can contain L3/4 parameters
(such as port numbers and IP addresses), as well as L7 parameters (such as host name and user
agent for HTTP connections).

The following table contains examples of services and their network parameters.

Table 4-1 Examples of Services and Service Parameters

Service Name Protocol Initiating Side Address List

Web Browsing HTTP
HTTPS
FTP

Subscriber-Initiated None

Web Hosting HTTP
HTTPS

Network-Initiated None

Local Streaming RTSP
MMS

Subscriber-Initiated 215.53.64.43
213.53.64.53

More than 600 protocols are supported by SCAS BB. Arranging them by purpose and providing
them with appropriate names—for example, Web Browsing, Web Hosting, Video Conferencing,
Video Streaming, and Local Content—which can later be used as part of the subscriber’s
purchased package, is a useful way for marketing services.

Following are examples of services:

• Web Browsing - Used for enabling and restricting Internet web browsing to outgoing HTTP
protocol transactions.

• Web Hosting - Used for providing Internet web hosting to incoming HTTP transactions.

• Video Conferencing - Used for providing video conferencing to RTSP transactions.

• Gaming Service - Provides a particular network service, such as a gaming application, access
to unrestricted bandwidth.

• Local Content Gaming - Gives subscribers an incentive to use a gaming application—such
as Doom hosted on local servers within the provider’s network, as opposed to Doom hosted
on servers outside the provider’s local network—by providing them with favorable gaming
service usage rates.

• Stock Quote Service - Charges a fee for a popular stock quote service used by business
investors.

Chapter 4 Service Configuration Entities

 Protocols

 SCAS for Broadband API Programmer's Guide

4-4 OL-7207-01

Using the SCAS BB object-oriented technology, you can define program elements, such as
service objects, with equivalent names, and can seamlessly integrate their functionality into
networked system-level applications. Other benefits of working with programmable services
include having greater control over how the network services are delivered.

An example of a service consisting of more than one service element might be a Gaming Service,
with one service element defining a network classification entity for the program Doom on port
666, and a second service element classification entity for the program Quake on port 333.
Because of the heavy bandwidth consumption of gaming applications, the appropriate service rule
defined on the particular Gaming Service might be to measure the bandwidth volume the
subscriber uses while connected to the service and bill accordingly.

Since rules are defined on the service, and not on its composite service elements, an important
design consideration when planning your system is to place service elements with common rule-

based functionality and characteristics together.

In practice, a system service consists of an array of service elements. Following are the main
components of service elements:

• Protocol - The name of protocol to be associated with the service element.

• Initiating Side - Whether there should be a restriction on the direction in which the
transaction is traveling. The possible directions are Network-initiated, Subscriber-initiated, or
both of them.

• (Optional) List - Whether the transaction should be associated with the IP addresses or host
names specified in the list.

• Each of the components of a service element mentioned above is described in the following
sections.

Protocols
The protocol of the transaction is determined by its port number and transport type. Based on
these parameters, further analysis (layer 7) is performed on the network transaction. For example,
if the port number is 80 and transport type is TCP and content matches the protocol’s signature,
the system checks its tables and maps the transaction to the HTTP protocol. Or, if the port number
is 1755 and transport type is UDP and content matches the protocol’s signature, the system maps
the transaction as RTSP, a protocol used for video streaming.

In future versions of SCAS BB, it is likely that existing network transaction for servicing mapping
schemes will be extended. These additional mapping schemes could be applied, for example, to
match the subject line of an e-mail containing the text “I love you” and forward the transaction to
be processed by a virus-scanning application before it is delivered to the subscriber. This would
trap a computer virus before it is capable of reaching the computer system of the provider or
subscriber and causing damage. Alternately, these additional mapping schemes could be used to
help prevent viruses from reaching the Internet, since the SCAS BB system is capable of
analyzing both incoming and outgoing traffic.

The following points summarize the main aspects of protocols in the SCAS BB system:

• A protocol, as defined in the system, is a combination of port number(s) and transport type.

Chapter 4 Service Configuration Entities

Dynamic Signatures

SCAS for Broadband API Programmer's Guide

OL-7207-01 4-5

• The service configuration contains a list of protocols, each with a protocol name, transport
type, and port number(s) if they are UDP or TCP protocols or with an IP protocol number. The
protocol of the network transaction is identified according to these parameters.

• When the port number of a TCP or UDP transaction is not defined in any of the service
configuration’s protocols, the system identifies the transaction’s protocol as a “generic TCP”
or “generic UDP” protocol.

• When the IP protocol number is not defined in any of the service configuration’s protocols,
the system identifies the transaction’s protocol as a “generic IP” protocol.

Dynamic Signatures
Dynamic signatures are a mechanism through which classification for new protocols can be added
to a configuration. This is useful for cases where a new protocol is released and a customer would
like to be able to classify its traffic (for example, a new P2P protocol in a P2P-Control solution).
Dynamic signatures are provided in special Dynamic Signature Script (DSS) files, which can be
added to a PQB file using the SCAS BB Console or API. After a DSS file is loaded into a PQB,
the new protocols it supports are available in the protocol list, can be added to Services as
appropriate, and are used when viewing reports. DSS files are periodically released by Cisco or its
partners in accordance with customer requirements and market needs.

Initiating Side
The initiating side of a network transaction may be either Network-Initiated or Subscriber-
Initiated. Subscriber-Initiated transactions are those initiated by the subscriber toward the
network, while Network-Initiated transactions are those initiated from the network toward the
subscriber.

The system can specify that the network transaction defined by the service element should be
restricted to: (a) Network-Initiated direction, (b) Subscriber-Initiated direction, or (c) the
transaction should be unrestricted in either direction.

Examining a few protocols will best explain how the “direction” process works.

• Looking at the ICQ protocol, it is evident why it does not matter which direction the
transaction takes, since instant messages should be both incoming (Network-Initiated) and
outgoing (Subscriber-Initiated).

• With HTTP, it is sensible to restrict the direction of the transaction to Subscriber-Initiated,
since HTTP is always Subscriber-Initiated when the subscriber ventures outward to surf the
Internet. If the direction of the HTTP transaction is Network-Initiated, it probably means that
a web server has been opened on the network subscriber’s local machine for receiving
incoming HTTP traffic. The provider may want to forbid the use of HTTP in this way because
it strains network resources; in addition, this usage could be considered a form of network
abuse and a breach of the subscriber-provider network service agreement.

Chapter 4 Service Configuration Entities

 Lists

 SCAS for Broadband API Programmer's Guide

4-6 OL-7207-01

Lists
When network addresses, such as IP addresses or host names, are arranged in groups connected
by a common purpose and on which a subscriber’s network transaction mapped to a service may
be applied, it is called a list. The system can contain multiple lists. The master list, which connects
the multiple lists together, is referred to as the list array.

Examples of lists are:

• A list of web sites offering offensive content that the provider specifies as undesirable. Access
to these sites can be blocked by defining a “Parental Watch Service.”

• A list of ftp sites containing network addresses, which the provider wants to limit download
transfer rates to a certain bandwidth rate, or wants to limit the number of concurrent sessions
it is allowed to use.

Lists containing network addresses may be specified as shown in following table:

Table 4-2 Examples of Types of Network Addresses

Network Address Example

IP address 123.123.3.2

IP address range
(and mask)

A range of IP addresses including mask can be of the form 123.3.123.0/24. This
means that the first 24 bits of the IP address should be included as specified, and
the remaining 8 bits or 256 IP addresses included in the range.

Host name www.cnn.com

Rules
Components of a service, such as lists, protocols, and initiating side, give the system only the
instructions on how to interpret the transaction passing through the network. They do not provide
instructions on the action that should be applied to the service. A rule is defined as a condition on
a service that specifies the action to be taken when the rule’s condition is met.

Since services need to operate on time-based information also, the system specifies that the
developer or programmer can define four sub-rules, one for each of the time frames defined.

Referring back to the section that described services, it was mentioned that services are made up
of service elements. It is important to remember that rules apply to the entire service and not just
to its individual elements; this is a system analysis and service design consideration that the
developer or programmer should take into account when planning the service configuration.

In general, a rule is a set of instructions to the SCE platform about how to treat network
transactions of a specific service. A rule may specify that a transaction should be blocked, or
granted a certain amount of bandwidth. It may also define an aggregate volume or session limit,
after which a set of different restrictions may be enforced on the transaction. A rule may also
specify how a transaction should be reported for billing or analysis purposes.

Chapter 4 Service Configuration Entities

Packages

SCAS for Broadband API Programmer's Guide

OL-7207-01 4-7

Packages
A package defines the group of services delivered to the subscriber. It contains the definitions of
the system’s behavior per service, such as any restrictions on network transactions, guidelines for
the transaction’s prioritization, or instructions regarding how the transaction should be reported.
This behavior is defined in a Rule.

Note The handling of Packages is license dependent.

Each subscriber in the network is provided a reference to a package to which that subscriber
belongs. The system maps the network transaction to a certain service if it fits the definition of
one of its service elements. In addition, the system identifies the subscriber to whom the
transaction pertains, according to the transaction’s network ID. Given that the system knows the
transaction’s network ID, the package the subscriber belongs to can be determined, and the correct
rule can be applied to the service of the subscriber’s network transaction.

The following table provides examples of packages, their services, and service parameters.

Table 4-3 Examples of Packages, Services, and Their Parameters

Package
Name

Service Access Bandwidth
Rate

Volume Quota Concurrent
Sessions per
Transaction

adsl-bronze Browsing Admit Unlimited 200 MB/Wk (mega-
bytes per week)

Unlimited

 Web Hosting Admit 20 Kb/s (kilo-
bits per second)

Unlimited 3

 Local Streaming Block N/A N/A N/A

 FTP Admit 30 Kb/s Unlimited 5

 Video
Conferencing

Admit 30 Kb/s 600 MB/Wk 5

adsl-gold Browsing Admit Unlimited Unlimited 1

 Web Hosting Admit 80 Kb/s 500 MB/M (mega-
bytes per month)

3

 Local Streaming Admit Unlimited Unlimited 10

 Video
Conferencing

Admit Unlimited Unlimited 30

Chapter 4 Service Configuration Entities

 Global Controllers

 SCAS for Broadband API Programmer's Guide

4-8 OL-7207-01

Global Controllers
Bandwidth control in the SCAS BB solution is accomplished in two stages: global control and
subscriber bandwidth control.

Bandwidth is controlled in the SCE Platforms by the use of virtual queues, or Global Controllers.
You can configure a maximum of 16 Global Controllers per interface (upstream/downstream). As
these are global controllers, their configuration is not linked to a package, but rather they are
configured for the entire system.

The purpose of the global controllers is to provide constraints for large, global, volumes of traffic,
such as “Total Gold Subscriber Traffic”, or “Total P2P Traffic”, as opposed to controlling
bandwidth at the subscriber level. Each global controller represents the percentage of total system
bandwidth that you want to allot to all traffic of a particular type. P2P traffic provides a good
illustration, as the volume of P2P traffic has increased to the point where it is causing significant
problems for many ISPs. Using the global controller, you can limit total P2P traffic in the system
to any desired percentage of total traffic bandwidth, keeping the amount of total traffic bandwidth
consumed by P2P traffic constant and under control.

Subscriber BW Controllers
A Subscriber Bandwidth Controller (BW Controller) controls the subscriber’s entire traffic or
some portion of it. A BW Controller is specified by two main parameters that define:

• The minimal bandwidth that must be granted to traffic that is controlled by the BW Controller.

• The maximal bandwidth allowed to that traffic.

Subscriber BW Controllers enforce bandwidth in two levels:

• The first level, Primary BW Controller (Total), specifies bandwidth Service Configurations
that the provider enforces on its subscribers.

• Second level, BW Controller (Internal), specifies Service Configurations that the subscriber
wants to enforce on its Services.

SCAS BB provides each subscriber with an independent set of BW Controllers. A single BW
Controller is used to control the total bandwidth of the subscriber. This BW Controller, which
provides the first-level control, is referred as the Primary BW Controller.

The other BW Controllers control the bandwidth of some Services of that subscriber. For
example, one BW Controller may control the Streaming Service, while another may control the
Download and Email Services together. These BW Controllers, which provide the second-level
control, are referred as BWCs (Internal).

Chapter 4 Service Configuration Entities

Subscriber Quota Buckets

SCAS for Broadband API Programmer's Guide

OL-7207-01 4-9

Subscriber Quota Buckets
When working in External Quota Provisioning mode, quota accounting is done using subscriber
quota buckets. Each subscriber has 16 buckets, and each bucket can be defined for volume or
sessions. When a subscriber uses a certain service, the amount of consumed volume or number of
sessions is subtracted from one of the buckets. The service configuration determines which bucket
to use for each service. In the case of volume buckets, consumption is counted in units of L3
kilobytes. In the case of session buckets, consumption is the number of sessions. For example, it
is possible to define that the Browsing and E-mail services consume quota from Bucket #1, P2P
service consumes quota from Bucket #2, and that all other services are not bound to any particular
bucket.

External quota provisioning systems can use the Quota Provisioning (QP) API ("Quota
Provisioning API" on page 7-1) to dynamically modify the quota in each bucket. For example, it
is possible to increase the quota of a certain bucket when the subscriber purchases additional
quota. These systems can also query the amount of remaining quota in each bucket. This can be
used, for example, to show the subscriber (in some personal web page) how much quota is left.

SCAS for Broadband API Programmer's Guide

OL-7207-01 5-1

This chapter discusses how the SCAS Service Configuration API contributes toward automating
SCAS BB service configuration activities. This chapter:

• Describes the SCAS Service Configuration API’s main elements.

• Explains and demonstrates the use of the SCAS Service Configuration APIs, service
configuration creation, editing, maintenance, management, and distribution functions.

• Provides example code fragments demonstrating how to use the SCAS Service Configuration
API.

This chapter contains the following sections:

• Overview of Service Configuration API 5-1

• SCAS API Base Classes 5-2

• SCAS Client/Server Connectivity 5-2

• Managing Service Configurations with SCAS Service Configuration
API 5-4

• Example - Adding a Service and Applying a Service Configuration

Overview of Service Configuration API
The Service Configuration represents the business rules of the provider as they are to be enforced
by the Service Control Application Suite for Broadband system on the provider’s network, and the
Service Configuration API is the programming end responsible for the Service Configuration’s
programming implementation.

When working with service configuration you use the Service Configuration API. The SCAS BB
Console is created with the Service Configuration API programming tools. The API lets you
automate routine service configuration activities, otherwise performed manually in the GUI.

From the stage of defining service configuration until the stage of activating it on the SCE
Platforms, the main programming steps of the Service Configuration API are:

Step 1 Defining a new service configuration, or retrieving an existing service configuration from the
SCE.

C H A P T E R 5

Service Configuration API

Chapter 5 Service Configuration API

 SCAS API Base Classes

 SCAS for Broadband API Programmer's Guide

5-2 OL-7207-01

Step 2 Defining a service and assigning it a name.

Step 3 Defining protocols and lists.

Step 4 Defining the service elements, and assigning them a protocol, a direction, and an optional list.

Step 5 Adding the service elements to the service.

Step 6 Defining a package and assigning it a name.

Step 7 Defining the package’s service rules, such as pre-breach and post-breach bandwidth limitations
and whether the service is enabled or disabled.

Step 8 Activating the service configuration by propagating it to the SCE.

The primary activity performed with the SCAS Service Configuration API is service
configuration creation and manipulation. This includes the definitions of services and rules, which
can be done offline. Once the service configuration is ready, it can be propagated to the SCE
Platforms.

Each of the steps mentioned above is explained in detail in the following sections. By working
through the sections in the chapter, together with the Subscriber Management API Reference
Manual, you will be able to create, edit, administer, and distribute SCAS BB service
configurations.

SCAS API Base Classes
The main SCAS API classes that are used for creating a working application are listed in the
following table.

Table 5-1 The Main SCAS API Classes

Class Purpose

EngageAPI Has functionality for enabling client programs to connect to the system’s
hardware and software. Performs network connection functions, and is
the starting point for element management activities.

SCAS PolicyAPI Has functionality for managing service configurations.

SCAS Client/Server Connectivity
A client application, such as an SCAS Java program, can connect to the SCE The SCAS API Java
class that enables the client application to connect to the SCE Platform is Engage.

• Including the SCAS Libraries

• Connecting to the SCE Platform

Chapter 5 Service Configuration API

SCAS Client/Server Connectivity

SCAS for Broadband API Programmer's Guide

OL-7207-01 5-3

Including the SCAS Libraries
Working with the SCAS Java API classes requires Java JDK version 1.3 or later.

The following JAR files should be included in the Java class-path:
• um_core.jar

• xerces.jar

• regexp.jar

• jdmkrt.jar

• log4j.jar

• engage.jar

These files are installed on the workstation as part of the installation process for an SCAS client.
This installation is performed using the SCAS BB clients installation CD-ROM provided with the
SCAS BB product.

Assuming that the SCAS clients were installed in the folder
C:\Program Files\Cisco\SCAS BB x.x.x\, all these JAR files can be located in the
folder C:\Program Files\Cisco\SCAS BB x.x.x\lib.

Note The version of the above JAR files should be coordinated with the version of other SCAS BB solution
components. Whenever a new solution version is installed or upgraded, be sure to upgrade the API
development JAR files.

Before you can work with SCAS Java API you need to import the SCAS Java package. Do this by
adding the following lines of code at the beginning of your program:
import com.cisco.apps.scas.*;
import com.cisco.apps.scas.common.*;
import com.cisco.apps.scas.policy.*;

Connecting to the SCE Platform
To retrieve a service configuration from the SCE Platform or to apply a service configuration to
the SCE Platform, it is necessary to connect to the platform. The SCAS class that makes this
connection possible is responsible for the communication and coordination of networking
activities.

The login method of the class provides a persistent connection. This method expects a user
name, a password, and the host name of a SCE to which to connect. If one of the method’s
parameters is incorrect, an exception is returned. Notice that once the service configuration has
been retrieved or applied, the connection should be closed.

Note: Always call the logout method when finished; do not leave an open connection to the
SCE. Also, try to reuse the Connection object, do not create a new one each time you need to
retrieve/apply.

Chapter 5 Service Configuration API

 Managing Service Configurations with SCAS Service Configuration API

 SCAS for Broadband API Programmer's Guide

5-4 OL-7207-01

The login method sets up the essential parameter values for a Service Configuration API call
later on, after a persistent login connection has been established. This method returns an object
of type Connection, which is a handle to the SCE used in most of the Service Configuration
API.

The following Java code demonstrates how a connection is made to an SCE:
String username = "admin";
String password = "pcube";
String se = "212.47.174.32";
Connection connection = null;
try{
 connection = Engage.login(se, user, password, Connection.SE_DEVICE);
}catch (ConnectionFailedException e)
{
// login failed – handle exception
}

The connection to the SCE remains open until it is closed. To break the connection with the SCE,
use the logout method, as follows:
Engage.logout(connection);

It is worth noting that although the SCAS Service Configuration API performs various service
configuration editing tasks, it is not necessary to be connected to the SCE while the service
configuration is being edited. That is, the service configuration can be prepared offline, and when
service configuration editing is complete a connection can be made to the SCE and the service
configuration propagated.

Managing Service Configurations with SCAS Service Configuration
API

The previous section showed how to connect (log in) and disconnect (log out) from the SCE,
using the SCAS API. Other operations can be performed on service configurations, such as
creating a new service configuration from scratch, or applying a service configuration: an
operation that propagates the service configuration to the SCE Platform and enables it for network
activation.

The Java PolicyAPI class serves as the starting point for the services of the SCAS Service
Configuration API.

The following sections provide pseudo-code examples, illustrating how various operations may be
performed on packages, services, service elements, protocols, lists, and rules. The service
configuration components are finally assembled in a package to be propagated to the SCE. These
sections include the following:

• Retrieving and Applying Service Configurations

• Importing, Exporting, and Creating Service Configurations

• Lists

• Protocols

• Service and Service Elements

• Packages

Chapter 5 Service Configuration API

Managing Service Configurations with SCAS Service Configuration API

SCAS for Broadband API Programmer's Guide

OL-7207-01 5-5

Retrieving and Applying Service Configurations
In the provider’s network, changes that are made to service configurations are usually made to
service configurations that are currently in use. For changes to be made, the service configuration
needs to be retrieved from the SCE for service configuration editing. Service Configuration
editing is done offline until the service configuration is ready for propagation to the SCE. Service
Configuration propagation can also be referred to as applying the service configuration, which
overwrites the original service configuration’s contents and activates the new business rules on
the SCE Platform

The two main service configuration methods used to retrieve service configurations and apply
service configurations to the SCE, retrievePolicy and applyPolicy, are shown in the
following code:
// retrieve a service configuration
Policy myPolicy =
 PolicyAPI.retrievePolicy(connection);
// apply a policy
PolicyAPI.applyPolicy (connection, myPolicy, SCAS.APPLY_FLAG_OVERWRITE);

One or more Service Control Platforms can be defined as the SCE, the second parameter of the
retrievePolicy()member function. After SCAS.Policy is retrieved, you can perform
various functions, such as inspecting, modifying, or saving the service configuration’s contents.

While an SCAS application is being developed, the system provides some useful facilities for
reviewing your SCAS Service Configuration API application. For example, if you are modifying
a service configuration with your Java application, you can save the service configuration’s
contents as a file using the savePolicy method. Afterward, you can open this file using the
SCAS Service Configuration Manager GUI application and inspect the service configuration
elements that your application has modified.

A SCAS service configuration is applied by calling the applyPolicy method.

Chapter 5 Service Configuration API

 Managing Service Configurations with SCAS Service Configuration API

 SCAS for Broadband API Programmer's Guide

5-6 OL-7207-01

Importing, Exporting, and Creating Service Configurations
In addition to retrieving an existing service configuration from an SCE Platform, another way to
retrieve a service configuration is through text files. The following code shows how to import a
service configuration:
String filename = "policy.pqb";
BufferedReader br =
 new BufferedReader(new InputStreamReader(new
FileInputStream(filename)));
Policy importedPolicy =
 ImportExportUtils.importPolicy(ImportExportUtils.XML_FORMATTER, br);

The purpose of exporting a service configuration might be for archiving purposes, or for editing
the service configuration at a later time. The following code shows how to export a service
configuration:
String filename = "policy.pqb";
PrintStream print = new PrintStream(new FileOutputStream(new
File(filename)));
ImportExportUtils.exportPolicy(policy, ImportExportUtils.XML_FORMATTER,
print);

New service configurations are usually created by modification of existing service configurations,
but when necessary new service configurations can be created from scratch. The constructor of
the Policy class uses the new operator to create a service configuration. The following line of
code creates such a service configuration:
Policy myPolicy = new Policy("");

Chapter 5 Service Configuration API

Managing Service Configurations with SCAS Service Configuration API

SCAS for Broadband API Programmer's Guide

OL-7207-01 5-7

Lists
The following code fragment demonstrates how lists can be used. A newly created list of
offensive-content web sites is to be added to the existing service configuration’s list array. The list
created in the sample is called Offensive Content Website List, and list elements are added to it.
Finally, the newly created list is added to the service configuration’s list array. Later, a rule can be
enforced to block access to the service with the HTTP Browsing Protocol for the host names
contained in the list.

The constructor of the Hostlist class expects as parameters a list name and an optional
description. The add method of the HostList class adds new elements to the list. The
listArray is retrieved using the getListArray method and the newly created list
offensiveList is appended to it, as shown in the following code.
 . . .
String name = " Offensive Content Website List ";
String description = " A list of offensive website hosts. ";
HostList offensiveList = new HostList(name, description);
try
{
 offensiveList.add(new HostListItem("www.offensive-content.com"));
 offensiveList.add(new HostListItem("www.more-offensive-content.com"));
} catch(DuplicateItemException e)
{
// handle duplicate exception
}
ListArray listArray = myPolicy.getListArray();
try
{
 listArray.addList(offensiveList);
} catch(DuplicateItemException e)
{
// handle duplicate exception
}

The following sections explain the different elements of the code fragment shown above. These
sections cover:

• Retrieving a List Array

• Navigating a List Array

• Determining the Type of a List

• Adding Elements to a List Array

Retrieving a List Array
The following line of code retrieves the array of lists:
ListArray listArray = myPolicy.getListArray();

The getListArray method retrieves an array of lists of type ListArray. After the list array
has been retrieved, you can ask questions about a list, such as list size, or retrieve a list's
individual elements.

Chapter 5 Service Configuration API

 Managing Service Configurations with SCAS Service Configuration API

 SCAS for Broadband API Programmer's Guide

5-8 OL-7207-01

Navigating a List Array
The following code iterates through the elements of the listArray:
for (int i = 0; i < listArray.getSize(); i++)
{
 Object o = listArray.getElementAt(i);
}

The loop shown traverses the listArray elements. The getSize method returns the size of
the ListArray, and the individual elements of the list's getElementAt method are assigned
to Object.

Determining the Type of a List
The getElementAt method returns an object, which can be an instance of the HostList
class or the IPRangeList class. The IPRangeList is a list of IP ranges. The following code
shows how the method can be used for determining the type of list:
if (o instanceof HostList)
{
 HostList hostlist = (HostList) o;
 System.out.println("Host List");
} else // IPRangeList
{
 IPRangeList iplist = (IPRangeList) o;
 System.out.println("IP Range List");

}

Adding Elements to a List Array
The following line of code adds a new element to the list:
// To add a new host list item
hostlist.add(new HostListItem("www.cnn.com"));

Assuming we retrieved the first list in the group of lists, www.cnn.com (http://www.cnn.com) is
added to the list.

Protocols
SCE Platforms react to the protocols of the network transaction that are mapped to services. A
service configuration contains a list of services, and their protocols can be created in one of two
ways: new protocols can be defined, or existing protocols can be expanded to include additional
ports. In addition, dynamic signature scripts that define protocols can be imported/removed. This
material is covered in the following sections:

• Defining Protocols

• Adding Ports to Protocols

• Dynamic Signature Scripts

http://www.cnn.com/

Chapter 5 Service Configuration API

Managing Service Configurations with SCAS Service Configuration API

SCAS for Broadband API Programmer's Guide

OL-7207-01 5-9

Defining Protocols
Protocols are recognized based on accepted networking conventions. For example, when the
server listens for a transaction on port 666, it is an accepted convention that port 666 listens for
protocols of type DOOM. It is in the interest of both parties to recognize the convention for the
service that is to be delivered.

The following code fragment shows how a protocol called quake is defined on port 26000 with a
transport type of TCP:
// create a new protocol and pass it a reference to a service configuration
Protocol quakeProtocol = new Protocol(myPolicy);
// set the protocol name
try
{
 quakeProtocol.setName("quake");
} catch(DuplicateException de)
{
 //a Protocol with such a name already exists in the service
configuration
 // handle exception
} catch(ItemNotFoundException infe)
{
 //item was missing while validating rename: service configuration
corrupt
 // handle exception
}

// add new port and transport type
try
{
 quakeProtocol.add(new PortListItem(26000, Consts.TRANSPORT_TYPE_TCP));
} catch(DuplicateItemException e)
{
 // the service configuration has a Protocol with such a defined port
 // handle exception
}
// add the quake protocol to the service configuration 's protocol list
try
{
 protocols.add(quakeProtocol);
} catch(DuplicateItemException e)]
{
 // the service configuration already has this Protocol
 // handle exception
}

The above example assumes that a reference to a service configuration called myPolicy exists,
and is passed as a parameter to the constructor of the Protocol class. The quakeProtocol
reference returned by the constructor is then used to set the name of the protocol.

The following line of code specifies that the protocol has a port number of 26000 and a transport
type of TCP:
quakeProtocol.add(new PortListItem(26000, Consts.TRANSPORT_TYPE_TCP));

The following line of code adds the protocol to the service configuration’s protocol list:
protocols.add(quakeProtocol);

This completes the definition of a protocol. The next section explains how additional ports can be
added to existing protocols.

Chapter 5 Service Configuration API

 Managing Service Configurations with SCAS Service Configuration API

 SCAS for Broadband API Programmer's Guide

5-10 OL-7207-01

Adding Ports to Protocols
Ports that are free can be added to existing protocols. This essentially maps the port to the
protocol and expands the protocol range.

The following code fragment retrieves the service configuration’s protocol list and searches for a
system-defined protocol called HTTP Browsing. Upon finding it, the protocol definition is
expanded to include an additional port.
 . . .
// get protocol list
ProtocolArray protocols = myPolicy.getProtocolList();
// get a protocol called "HTTP Browsing":
try
{
 Protocol http = protocols.getProtocol ("HTTP Browsing");
} catch(ItemNotFoundException infe)
{
 // the service configuration does not have a Protocol with such a name
 // handle exception
}
// add port 8082 to HTTP Browsing
try
{
 http.add(new PortListItem (8082, Consts.TRANSPORT_TYPE_TCP));
} catch(DuplicateItemException e)
{
 // the service configuration has a Protocol with such a defined port
 // handle exception
}
 . . .

The example assumes that a protocol called HTTP Browsing exists. The getProtocol
method of the Protocol class returns a handle that points to the protocol array, as shown in the
following line of code:
ProtocolArray protocols = myPolicy.getProtocolList();

The following line of code searches by name for the specified protocol:
Protocol http = protocols.getProtocol ("HTTP Browsing");

The add method of class Protocol expects a numerical port value and a transport type. In the
above example, port 8082 is introduced as having a TCP transport type, and is added to an
existing service called HTTP Browsing. The following line of code adds a port to a protocol:
http.add(new PortListItem (8082, Consts.TRANSPORT_TYPE_TCP));

The service called HTTP Browsing has been expanded. This expansion is necessary if you
want the service rule to service HTTP transactions delivered on port 8082.

Chapter 5 Service Configuration API

Managing Service Configurations with SCAS Service Configuration API

SCAS for Broadband API Programmer's Guide

OL-7207-01 5-11

Service and Service Elements
The next example creates a Service with two service elements. The following code fragment
demonstrates how many service elements can be associated with a single service.

One service element is created for the game Doom, and the second service element is created for
the game Quake. Both are well known games, and will be added to a service called Gaming
Service.
 . . .
Service gamingService = new Service(myPolicy); // create a service
try
{
 gamingService.setName("Gaming Service"); // set service name
} catch(DuplicateException de)
{
 // a Service with such a name already exists in the service
configuration
 // handle exception
} catch(ItemNotFoundException infe)
{
 //item was missing while validating rename: service configuration
corrupt
 // handle exception
}

// create a service element for Subscriber-Initiated Doom
try
{
 gamingService.addProtocol("doom",

ServiceElement.DIRECTION_SUBSCRIBER_INITIATED);
} catch(ItemNotFoundException e)
{
 // there is no such Protocol in the service configuration
 // handle exception
} catch(DuplicateItemException e)
{
 // there is already a Service with such a Protocol and direction in the
service configuration
 // handle exception
}
// create a service element for Subscriber-Initiated Quake
try
{
 gamingService.addProtocol("quake",

ServiceElement.DIRECTION_SUBSCRIBER_INITIATED);
} catch(ItemNotFoundException e)
{
 // there is no such Protocol in the service configuration
 // handle exception
} catch(DuplicateItemException e)
{
 //There is already a Service with such a Protocol and direction in the
service configuration
 // handle exception
}

// add service to service configuration
try

Chapter 5 Service Configuration API

 Managing Service Configurations with SCAS Service Configuration API

 SCAS for Broadband API Programmer's Guide

5-12 OL-7207-01

{
 myPolicy.getServiceList().add(gamingService);
} catch(DuplicateItemException e)
{
 //There is already a Service in the service configuration
 // handle exception
}

 . . .

The following sections explain the different elements of the code fragment shown above:

• Creating a Service

• Defining Service Elements

• Adding a Service to Service Configuration

Creating a Service
The class that contains the Service is instantiated in the following line of code:
Service gamingService = new Service(myPolicy); // create a service

It assumes that a Policy reference called myPolicy is passed as a parameter to the Service
constructor.

The following line of code defines the name of the service:
gamingService.setName("Gaming Service"); // set service name

Chapter 5 Service Configuration API

Managing Service Configurations with SCAS Service Configuration API

SCAS for Broadband API Programmer's Guide

OL-7207-01 5-13

Defining Service Elements
The following line of code creates a new service element:
gamingService.addProtocol("doom",
 ServiceElement.DIRECTION_SUBSCRIBER_INITIATED);

The service element created above is applied to all Subscriber-Initiated network transactions of
the doom protocol. However, you can specify that this service element should apply only to those
network transactions carried out against specific network addresses. To do so, include a list of
server addresses with the service element, as in the following example:
int listIndex =
 myPolicy.getListArray().getListIndex("gaming servers list");
if(listIndex == -1)
{
 // there is no such list
 // handle error
}
int serviceElementIndex =
gamingService.getServiceElementArray.getIndexOfItem("doom", ServiceElement.
DIRECTION_SUBSCRIBER_INITIATED);
if(serviceElementIndex == -1)
{
 // There is no such ServiceElement
 // handle error
}
try {
 gamingService.addList(serviceElementIndex,listIndex);
} catch(ItemNotFoundException e)
{
// handle error
} catch(DuplicateItemException e)
{
// handle error
}

Adding a Service to Service Configuration
As the final step, the service needs to be added to the service configuration. The following code
shows how to add gamingService to the service configuration:
// add service to service configuration
myPolicy.getServiceList().add(gamingService);

Packages

Note Defining a package is license dependant; the capacity control of a license prevents defining more
packages than the license specifies

Chapter 5 Service Configuration API

 Managing Service Configurations with SCAS Service Configuration API

 SCAS for Broadband API Programmer's Guide

5-14 OL-7207-01

Before you can start to define rules and packages, you first need to define services and add them
to the service configuration, as was described in the previous section.

The following section of code illustrates how packages and rules are defined, and how they may
be used. Two packages, a Family Package and a Bachelor Package, are created for a
single service configuration.

The example assumes we had already created a Parental Watch Service that contains a
Parental Watch List. For the Family Package, we enable the Parental Watch
Service. Subscribers to this package are blocked from accessing the censored content defined
in the Parental Watch List. For the Bachelor Package we do not enable the
Parental Watch Service, thus permitting access to those sites.
/* Define package 1 */
Package family = new Package(myPolicy); // create a package
try
{
 family.setName("Family Package"); // set package name
} catch (DuplicateItemException e)
{
 // there already is a Package in service configuration with such a name
 // handle exception
}

ServiceRule serviceRule = new ServiceRule(policy);

// adding service to rule
try
{
 serviceRule.setServiceName("Parental Watch Service");
} catch(ItemNotFoundException e)
{
 // no such service
 // handle exception
}

// get the default rule - it will apply to all the time-based rules
// since no time-based rules are created
Rule rule = serviceRule.getDefaultRule();
// set rule state to be enable
rule.setState(Rule.RULE_STATE_ENABLED);

// set rule action to be block
rule.setPreBreachAccessMode(Rule.ACCESS_BLOCK);

// get package’s service rule array
ServiceRuleArray serviceRuleArray = family.getServiceRuleList();

// add service rule to the package's serviceRuleArray
try
{
 serviceRuleArray.add(serviceRule);
} catch(DuplicateItemException e)
{
 // there already is such a rule
 // handle exception
}

/* Define package 2 */
Package bachelor = new Package(myPolicy); // create a package
try

Chapter 5 Service Configuration API

Managing Service Configurations with SCAS Service Configuration API

SCAS for Broadband API Programmer's Guide

OL-7207-01 5-15

{
 bachelor.setName("Bachelor Package"); // set package name
} catch (DuplicateItemException e)
{
 // there already is a Package in service configuration with such a name
 // handle exception
}

serviceRule = new ServiceRule(policy);

// adding service to rule
try
{
 serviceRule.setServiceName("Parental Watch Service");
} catch(ItemNotFoundException e)
{
 // no such service
 // handle exception
}

// get the default rule - it will apply to all the time-based rules
// since no time-based rules are created
rule = serviceRule.getDefaultRule();
// set rule state to be enable
rule.setState(Rule.RULE_STATE_ENABLED);

// set rule action to be block
rule.setPreBreachAccessMode(Rule.ACCESS_ADMIT);

// get package service rule array
serviceRuleArray = bachelor.getServiceRuleList();

// add service rule to the package's serviceRuleArray
try
{
 serviceRuleArray.add(serviceRule);
} catch(DuplicateItemException e)
{
 // there already is such a rule
 // handle exception
}

// add the packages to the service configuration
try
{
 policy.getPackageList().add(family);
 policy.getPackageList().add(bachelor);
}catch(DuplicateItemException e)
{
 //there are already such packages
 //handle exception
}

The following sections explain the different elements of the code fragment shown above. These
sections cover:

• Creating and Naming Packages

• Defining Service Rules

• Breaches

• Example - FTP Service Rule

Chapter 5 Service Configuration API

 Managing Service Configurations with SCAS Service Configuration API

 SCAS for Broadband API Programmer's Guide

5-16 OL-7207-01

• Aggregation

• Bandwidth Controller

• Breach Reports

• Default and Non-Default Time Frames

• Block and Re-Direct

Creating and Naming Packages
To create a package, use the new operator. The class that contains the Package is instantiated as
shown in the code of the following line:
Package family = new Package(myPolicy); // create a package

After creating a new package, give the package a name, as shown in the following line of code:
family.setName("Family Package"); // set package name

Defining Service Rules
The following line of code returns a reference to the rule specified in the parameter of the
residential getRule method:
ServiceRule pw =residential.getRule("Parental Watch Service");

Breaches
A breach occurs when a limit placed on a network transaction is exceeded. The breach is defined
when the rule for the service is declared. It can be the exceeding of a limit, such as a bandwidth
volume limit or a kilobits per second (Kb/s) transfer rate limit; or can be some other pre-
determined limit placed on the service. The purpose of defining a breach is to specify an action to
be executed when the limit has been breached.

A Rule has two modes: pre-breach and post-breach. The system performs the pre-breach action
before the limit of the service rule is reached, and the post-preach action after the limit is reached
and exceeded.

Examples of these actions are bandwidth volume restriction, denial of service, triggering of an
RDR report, and web-site redirection. Every pre-breach function call (method) has its post-breach
counterpart.

A breach needs to be made active before it can be applied, since by default a breach is inactive.
The code in the following line shows how to activate the pre-breach condition by setting the flag
of the setPreBreachAccessMode method to true:
rule.setPreBreachAccessMode(Rule.ACCESS_ADMIT);

Chapter 5 Service Configuration API

Managing Service Configurations with SCAS Service Configuration API

SCAS for Broadband API Programmer's Guide

OL-7207-01 5-17

Example - FTP Service Rule
The following example illustrates how rules for an ftp service can be set up. It assumes that a
service called FTP File Downloading exists. The rules restrict bandwidth to 5 Kb/s and 100
MB daily. If either limit is reached, the service is blocked and an RDR is triggered. The code in
this example specifies that the RDR should use daily aggregates for reporting. Finally, the service
configuration is applied before the connection is closed.
// create new package
Package residential = new Package(myPolicy);

// add the packages to the service configuration
try
{
 policy.getPackageList().add(residential);
} catch(DuplicateItemException e)
{
 // there already are such packages
 // handle exception
}

// set service name
try
{
 residential.setName("residential");
} catch (DuplicateItemException e)
{
 // there already is a Package with such a name in service configuration
 // handle exception
}

ServiceRule serviceRule = new ServiceRule(policy);

// adding service to rule
try
{
 serviceRule.setServiceName("Parental Watch Service");
} catch(ItemNotFoundException e)
{
 // no such service
 // handle exception
}

// get the default rule - it will apply to all the time-based rules
// since no time-based rules are created
Rule rule = serviceRule.getDefaultRule();
// set rule state to be enable
rule.setState(Rule.RULE_STATE_ENABLED);

// set rule action to be admitted
rule.setPreBreachAccessMode(Rule.ACCESS_ADMIT);

// limit daily volume to approximately 100 MB
rule.setBreachVolumeLimit(100000);

// set rule post-breach action to be blocked
rule.setPostBreachAccessMode(Rule.ACCESS_BLOCK);

// generate RDR when limit is breached
rule.setBreachReportEnabled(true);

Chapter 5 Service Configuration API

 Managing Service Configurations with SCAS Service Configuration API

 SCAS for Broadband API Programmer's Guide

5-18 OL-7207-01

// get package service rule array
ServiceRuleArray serviceRuleArray = residential.getServiceRuleList();

// add service rule to the package's serviceRuleArray
try
{
 serviceRuleArray.add(serviceRule);
} catch(DuplicateItemException e)
{
 // there is already such a rule
 // handle exception
}

// tell the package to use daily aggregation periods
residential.setAggregationPeriod(Package.AGGREGATED_PERIOD_DAILY);

// apply changes to the SCE Platform
PolicyAPI.applyPolicy(connection, myPolicy, SCAS.APPLY_FLAG_OVERWRITE);
// close the connection
SCAS.logout(con);

As shown in the above example, the system can measure total volume either in kilobytes used or
as the number of network sessions used in a service transaction. If one of these bounds is
exceeded, the system can, for example, modify the subscriber’s bandwidth usage rate, send out a
report (RDR), or block the subscriber from using the service.

The following sections break down the program and explain its individual elements.

Aggregation
Aggregation periods are defined globally per package. The aggregate is used for reporting
purposes when an RDR is created. Aggregates can be measured on a monthly, weekly, daily or
hourly basis.

For the same service, different aggregate periods can be used in different packages. That is, in one
package you can specify that a daily aggregate of an FTP Download Service should be
used, and in a second package using the same FTP Download Service specify that an
hourly total be used. The aggregate, or total usage information, can then be used in the
subscriber’s itemized bill or account statement.

The following line of code specifies that daily totals should be used in the generated RDR:
residential.setAggregationPeriod (Package.AGGREGATED_PERIOD_DAILY);

Quota resolution is defined per package, therefore if the package consists of two services—for
example, an FTP Download Service and a Video Conferencing Service— the
aggregation would reflect the total of both services. This should be a consideration when
designing the package.

It is worth noticing in the above example that the order of commands does not matter, since the
service configuration is edited off-line. In consequence, the commands are not executed until the
modified service configuration has been propagated to the SCE Platforms of the SCE.

Chapter 5 Service Configuration API

Managing Service Configurations with SCAS Service Configuration API

SCAS for Broadband API Programmer's Guide

OL-7207-01 5-19

Bandwidth Controller
Bandwidth controllers, also known as meters, are flow-rule-based functions used for measuring
the volume, in Kbps, that a particular service transaction is using. They can measure single-flow
transactions or transactions that use several flows simultaneously. Bandwidth controller rules may
be flow-based rules, time-based rules, or a combination of the two.

Bandwidth controllers are directional: each bandwidth controller controls the volume in either the
upstream or the downstream direction. The direction is configurable through the API.

It is useful to know the number of flows (concurrent sessions) and their total bandwidth usage
rate, since it gives the provider greater control over system services and enables the SP to have
greater influence over how network resources are utilized. For example, bandwidth controller
functionality enables the provider to specify that the subscriber may use an unlimited number of
flows, so long as a certain bandwidth rate is not exceeded.

Having control over the number of flows being used in a network transaction would be useful, for
example, in a digitally broadcast Internet video application using the RTSP protocol. RTSP is
capable of keeping several concurrent flows of video traffic going at once. The bandwidth
controller gives the provider the tools to specify that the subscriber may not exceed a certain rate
limit.

The following code illustrates use of a bandwidth controller function at the flow level:
// assigning BWController number 3 to the Rule in upstream direction
ftpRule.getDefaultRule().setPreBreachUpstreamBWControllerIndex(3);

Breach Reports
A breach occurs when a system-specified limit has been exceeded. When a breach is encountered,
two kinds of actions may take place. They are: (a) the service may be blocked, or (b) some sort of
change may be made to the way in which a subscriber’s transaction or service is delivered.

The system provides, therefore, a facility to generate two types of reports. They are: (a) block
report, or (b) breach report. The system can be instructed that each time a service has been
breached, the system should trigger a report that depends on the type of breach that occurred.

If a breach occurs, the following line of code triggers the creation of an RDR by setting the
function’s parameter to true:
Rule.setBreachReportEnabled(true);

Alternatively, instead of generating an RDR, the system can be set up such that each time a breach
occurs the subscriber is notified by e-mail.

Chapter 5 Service Configuration API

 Managing Service Configurations with SCAS Service Configuration API

 SCAS for Broadband API Programmer's Guide

5-20 OL-7207-01

Default and Non-Default Time Frames
This section discusses time frames, default rules, and non-default rules, and when the default rule
function should be used.

Through the use of time frames, a single rule may be set up to have different behavior at different
times. Examples of time frames are an evening time frame, a night time frame, and a weekend
time frame. The SCAS system allows up to four different time frames to be defined.

Using the API gives the capability of developing an application that handles information based on
time-frame exceptions. For example, an application that changes the time frame so that a
weekend-rate Video Conferencing Service allows unlimited bandwidth usage from Wednesday the
31st at 3 p.m. until 6 p.m. of the following day, as opposed to its regular day-based schedule
where the weekend rate begins at Friday 4:54 p.m.

When the getDefaultRule method is used, it means that the rule is applied globally to all
time frames. The following code is an example of the getDefaultRule method being used set
a global time-frame rule:
// set rule post-breach action to block access
rule.setPostBreachAccessMode(Rule.ACCESS_BLOCK);

An example of a non-default rule is the following. Assume a default rule was defined where a
subscriber is denied access to a service. Assume also two time frames were created: one for
weekdays between 2200 till 0600, and the other for Fridays during the same hours. An exception
could be created whereby access to the service is permitted during the weekday time frame while
access to the service on Fridays is blocked.

The following code fragment illustrates how a single time frame called T1 is created. Since the
default rule applies to all time frames, the T1 time frame is used to establish its exception and
therefore permit access to the service during the period for which it is defined.
 . . .
// creates a new Package
Package myPackage = new Package(myPolicy);

// add the packages to the service configuration
try
{
 policy.getPackageList().add(myPackage);
} catch(DuplicateItemException e)
{
 // there already are such packages
 // handle exception
}

// creates new service rule
ServiceRule serviceRule = new ServiceRule(policy);

// adds service to rule
serviceRule.setServiceName(serviceName);

// gets the default rule - it will apply to all time based rules
// since no time based rules are created
Rule defaultRule = serviceRule.getDefaultRule();
// set default rule state to be disable
defaultRule.setState(Rule.RULE_STATE_DISABLED);

// announce the need for configuring specific behavior to T1
Rule t1Rule = null;

Chapter 5 Service Configuration API

Managing Service Configurations with SCAS Service Configuration API

SCAS for Broadband API Programmer's Guide

OL-7207-01 5-21

Try
{
 t1Rule = serviceRule.addTimeFrameRule(TimeFrame.T1);
} catch(ItemNotFoundException e)
{
// handle exception
} catch(DuplicateItemException e)
{
// handle exception
}

// set T1 rule state enabled
t1Rule.setState(Rule.RULE_STATE_ENABLED);

// adds service rule to the package's serviceRuleArray
myPackage.setServiceRule(serviceRule);
 . . .

Block and Redirect
Block-and-redirect functions, relevant only to services using redirectable protocols such as HTTP
and RTSP, are provided so that if a subscriber attempts to access a service that is not part of the
service package, the subscriber’s transaction can be redirected to a different network address. The
network address or web site can be used to provide useful information regarding how to gain
access to the service.
// assign the default redirect string of the "HTTP Browsing" protocol
// to be redirected to a certain URL
try
{
 policy.setProtocolRedirectString("HTTP
Browsing","http://www.mySite.com/redirect.html");
} catch (ItemNotFoundException e)
{
 //handle exception
} catch (MalformedURLException e)
{
 //handle exception
}

// creates new service rule
ServiceRule serviceRule = new ServiceRule(policy);

// adds service to rule
serviceRule.setServiceName("http browsing service");
// gets the default rule - it will apply to all time-based rules
// since no time-based rules are created
Rule defaultRule = serviceRule.getDefaultRule();
// set default rule state to be enable
defaultRule.setState(Rule.RULE_STATE_ENABLED);

// set rule post-breach action to block and redirect
defaultRule.setPostBreachAccessMode(Rule.ACCESS_BLOCK_AND_REDIRECT);

Chapter 5 Service Configuration API

 Example - Adding a Service and Applying a Service Configuration

 SCAS for Broadband API Programmer's Guide

5-22 OL-7207-01

Example - Adding a Service and Applying a Service Configuration
The Doom gaming application is used as a template in the following example, which explains
how a network provider can set up a service on a gaming application server hosted within the
subscriber’s internal network. The Java application has the following features:

Step 1 A new service configuration will be created.

Step 2 A service element named Local Doom will be defined.

Step 3 The Doom service will be Subscriber-Initiated.

Step 4 The Java application will map a list of IP addresses of local servers within the subscriber’s
network for hosting the service.

Step 5 The Java application will trigger billing records based on the amount of time the subscriber stays
connected to the service.

Chapter 5 Service Configuration API

Example - Adding a Service and Applying a Service Configuration

SCAS for Broadband API Programmer's Guide

OL-7207-01 5-23

import com.cisco.apps.scas.Connection;
import com.cisco.apps.scas.ConnectionFailedException;
import com.cisco.apps.scas.SCAS;
import com.cisco.apps.scas.PolicyAPI;
import com.cisco.apps.scas.common.DuplicateItemException;
import com.cisco.apps.scas.common.ItemNotFoundException;
import com.cisco.apps.scas.policy.IPListItem;
import com.cisco.apps.scas.policy.IPRangeList;
import com.cisco.apps.scas.policy.ListArray;
import com.cisco.apps.scas.policy.Package;
import com.cisco.apps.scas.policy.PackageArray;
import com.cisco.apps.scas.policy.Policy;
import com.cisco.apps.scas.policy.PortListItem;
import com.cisco.apps.scas.policy.Protocol;
import com.cisco.apps.scas.policy.ProtocolArray;
import com.cisco.apps.scas.policy.Rule;
import com.cisco.apps.scas.policy.Service;
import com.cisco.apps.scas.policy.ServiceArray;
import com.cisco.apps.scas.policy.ServiceElement;
import com.cisco.apps.scas.policy.ServiceRule;
import com.cisco.apps.scas.policy.ServiceRuleArray;

/**
 * SCAS API Example
 */
public class Example {

 public static void main(String[] args) {
 Policy policy = new Policy("");

 // get policy package list
 PackageArray packageArray = policy.getPackageList();

 byte ip_mask = 32;

 // create host list item
 IPListItem item1 = new IPListItem("1.1.1.1", ip_mask);
 IPListItem item2 = new IPListItem("2.2.2.2", ip_mask);
 IPListItem item3 = new IPListItem("3.3.3.3", ip_mask);

 // create ip list
 String listName = "doom ips";
 IPRangeList ipList =
 new IPRangeList(listName, "A list of doom ips", false);

 // add list item to list
 try {
 ipList.add(item1);
 ipList.add(item2);
 ipList.add(item3);
 } catch (DuplicateItemException e) {
 System.out.println(
 "Add ip list item to ip list failed :" +
e.getMessage());
 System.exit(1);
 }

 // get the policy list array and add to it the ip list
 ListArray policyListArray = policy.getListArray();
 try {
 policyListArray.addList(ipList);
 } catch (Exception e) {

Chapter 5 Service Configuration API

 Example - Adding a Service and Applying a Service Configuration

 SCAS for Broadband API Programmer's Guide

5-24 OL-7207-01

 System.out.println(
 "Add ip list to policy lists failed :" +
e.getMessage());
 System.exit(1);
 }

 // get Policy Service list
 ServiceArray policyServiceList = policy.getServiceList();

 // create doom protocol
 String protocolName = "doom";
 ProtocolArray policyProtocols = policy.getProtocolList();
 Protocol protocol = new Protocol(policy);

 // set port
 PortListItem doomPort =
 new PortListItem(666, PortListItem.TRANSPORT_TYPE_BOTH);

 try {
 protocol.add(doomPort);
 } catch (DuplicateItemException e) {
 System.out.println(
 "ERROR - adding port 666 failed :" +
e.getMessage());
 System.exit(1);
 }

 try {
 policyProtocols.add(protocol);
 } catch (DuplicateItemException e) {
 System.out.println(
 "ERROR - adding protocol \""
 + protocolName
 + "\" failed:"
 + e.getMessage());
 System.exit(1);
 }

 // to allow doom to support IP addresses,
 // the generic TCP and UDP must support it
 try {
 policyProtocols.getProtocol(
 Protocol.GENERIC_UDP_PROTOCOL).setListElementsType(
 Protocol.LIST_SUPPORT_IP_RANGE_LIST);
 } catch (Exception e) {
 System.out.println(
 "ERROR - UDP setListElementsType threw exception"
 + e.getMessage());
 System.exit(1);
 }

 // create new Service
 Service service = new Service(policy);

 String serviceName = "Local Doom";

 try {
 // set the service name, which is its identifier
 service.setName(serviceName);
 } catch (ItemNotFoundException e) {
 System.out.println(

Chapter 5 Service Configuration API

Example - Adding a Service and Applying a Service Configuration

SCAS for Broadband API Programmer's Guide

OL-7207-01 5-25

 "ERROR - service set name threw
ItemNotFoundException :"
 + e.getMessage());
 System.exit(1);
 } catch (DuplicateItemException e) {
 System.out.println(
 "ERROR - service set name threw
DuplicateItemException :"
 + e.getMessage());
 System.exit(1);
 }

 // add the doom protocol to the service
 try {
 service.addProtocol(protocolName,
ServiceElement.DIRECTION_BOTH);
 } catch (ItemNotFoundException e) {
 System.out.println(
 "ERROR - adding protocol threw
ItemNotFoundException :"
 + e.getMessage());
 System.exit(1);
 } catch (DuplicateItemException e) {
 System.out.println(
 "ERROR - adding protocol threw
DuplicateItemException :"
 + e.getMessage());
 System.exit(1);
 }

 // add the list to the service: the first index is
 // the service element index – that is, to which protocol -
 // and the second index is the list index in the policyListArray
 try {
 service.addList(0, ipList.getName());
 } catch (ItemNotFoundException e) {
 System.out.println(
 "ERROR - adding list threw ItemNotFoundException :"
 + e.getMessage());
 System.exit(1);
 } catch (DuplicateItemException e) {
 System.out.println(
 "ERROR - adding list threw DuplicateItemException
:"
 + e.getMessage());
 System.exit(1);
 }

 // add service to policyServiceList
 try {
 policyServiceList.add(service);
 } catch (DuplicateItemException e) {
 System.out.println(
 "ERROR - adding service to policy service list "
 + "threw DuplicateItemException :"
 + e.getMessage());
 System.exit(1);
 }

 // creating a new Package
 Package pack = new Package(policy);

Chapter 5 Service Configuration API

 Example - Adding a Service and Applying a Service Configuration

 SCAS for Broadband API Programmer's Guide

5-26 OL-7207-01

 String packageName = "Game users";
 try {
 pack.setName(packageName);
 } catch (DuplicateItemException e) {
 System.out.println(
 "ERROR - package.setName threw
DuplicateItemException");
 System.exit(1);
 }

 // add package to service configuration package array
 try {
 packageArray.add(pack);
 } catch (DuplicateItemException e) {
 System.out.println(
 "ERROR - add package failed : " + e.getMessage());
 System.exit(1);
 }

 // create new service rule
 ServiceRule serviceRule = new ServiceRule(policy);

 // add service to rule
 try {
 serviceRule.setServiceName(serviceName);
 } catch (ItemNotFoundException e) {
 System.out.println(
 "ERROR - service rule set service name failed:"
 + e.getMessage());
 System.exit(1);
 }

 // get the default rule - it will apply to all the time-based
rules
 // since no time-based rules are created
 Rule rule = serviceRule.getDefaultRule();

 // set rule state to enabled
 rule.setState(Rule.RULE_STATE_ENABLED);

 // set rule action to be blocked
 rule.setBillingReportEnabled(true);

 // set other Rule parameters
 // . . .

 // get package service rule array
 ServiceRuleArray serviceRuleArray = pack.getServiceRuleList();

 // add service rule to the package's serviceRuleArray
 try {
 serviceRuleArray.add(serviceRule);
 } catch (DuplicateItemException e) {
 System.out.println(
 "ERROR - adding service rule to the package "
 + "threw DuplicateItemException : "
 + e.getMessage());
 System.exit(1);
 } catch (ItemNotFoundException e) {
 System.out.println(
 "ERROR - adding service rule to the package "
 + "threw ItemNotFoundException : "

Chapter 5 Service Configuration API

Example - Adding a Service and Applying a Service Configuration

SCAS for Broadband API Programmer's Guide

OL-7207-01 5-27

 + e.getMessage());
 System.exit(1);
 }

 // connect to the SCE Box
 String username = "admin";
 String password = "pcube";
 String se_address = "212.47.174.32";
 Connection connection = null;
 try {
 connection =
 SCAS.login(
 se_address,
 username,
 password,
 Connection.SE_DEVICE);
 } catch (ConnectionFailedException e) {
 // login failed – handle exception
 }

 // to apply the service configuration, the parameters are:
 // a connection, the new policy to apply, the SCE to apply to,
 // and a flag stating that the a connection,should be applied
 // (although you might override other applied service
configurations)
 try {
 PolicyAPI.applyPolicy(connection, policy);
 } catch (Exception e) {
 System.out.println("ERROR - first apply failed :" +
e.getMessage());
 System.exit(1);
 } finally {
 SCAS.logout(connection);
 }
 System.exit(0);
 }

 private Example() {}
}

SCAS for Broadband API Programmer's Guide

OL-7207-01 6-1

Note The concepts in this chapter are described in more details in the SCE 1000/SCE 2000 User Guides and
the SM User Guide. Please refer to these documents for more information.

This chapter discusses subscriber integration in a SCAS BB application. This chapter describes
the available subscriber modes, and when to use each of them.

This chapter contains the following sections:

• Subscriber Modes 6-1

• Subscriber-less Mode 6-2

• Anonymous Subscriber Mode 6-3

• Static Subscriber-Aware Mode 6-3

• Dynamic Subscriber-Aware Mode and smartSUB Manager (SM) 6-4

Subscriber Modes
The SCAS BB system can operate in any of the following subscriber modes:

• subscriber-less

• anonymous subscriber

• subscriber-aware; in addition, the subscriber-aware mode can be:

• static

• dynamic

Note The different subscriber modes are implicit, as there is no global setting controlling the mode in effect.
Refer to the system manuals to see how to configure the system to work in the desired mode.

C H A P T E R 6

Subscriber Integration

Chapter 6 Subscriber Integration

 Subscriber-less Mode

 SCAS for Broadband API Programmer's Guide

6-2 OL-7207-01

After presenting (in the following table) a summary of the subscriber modes, features, advantages,
and situations in which to use each mode, this section discusses each subscriber mode in further
detail.

Table 6-1 Subscriber-Mode Summary Table

Mode Feature Supported Main Advantages Situations in Which to Use

Subscriber-
less

Global (device-
level) analysis and
control

Turn-key: No subscriber
configuration required

Not influenced by the
number of subscribers (or
inbound IP addresses)

For global control solution or
subscriber level analysis. Examples:

• Controlling P2P uploads at peering
points

• Limiting total amount of P2P to a
specified percent

Anonymous
subscriber

Global analysis and
control

Individual IP address
level analysis and
control

Turn-key: Need only to
define IP ranges possible
for subscribers

Provides subscriber-level
control without integration

For IP level analysis or control that is
not differentiated per subscriber, and
where offline IP-address/subscriber
binding is sufficient. Examples:

• Limiting per subscriber P2P to 64
Kbps (kilobytes per second)

• Identifying top subscribers by
identifying top IP addresses and
correlating manually/offline with
RADIUS/DHCP logs

Subscriber-
aware

Full system
functionality

Differentiated and dynamic
control per subscriber

Subscriber-level analysis,
regardless of IP address in
use

Grouping of traffic for
control/analysis into
statically defined IP ranges

For

• Controlling/analyzing traffic on a
subscriber level.

• Monitoring subscriber-usage,
regardless of IP addresses

• Assigning different service
configuration or packages to
different subscribers, and changing
packages dynamically

Subscriber-less Mode
Subscriber-less mode provides control and link level analysis functions at a global device
resolution. In subscriber-less mode, no integration is required, and the total number of subscribers
utilizing the monitored link is unlimited from the perspective of the SCE Platform.

SCAS BB is useful also when there are no subscribers at all: The user can view network activity
using traffic discovery, and perform capacity control using global BW limiters and the package
for unknown subscribers.

Chapter 6 Subscriber Integration

Anonymous Subscriber Mode

SCAS for Broadband API Programmer's Guide

OL-7207-01 6-3

Anonymous Subscriber Mode
Anonymous subscriber mode provides the means for analyzing and controlling network traffic at
a subscriber-inbound IP address. (For example, it is possible to analyze network activity to
identify the Top-P2P-IP-addresses, or limit each subscriber’s P2P traffic to 64 Kbps.) Anonymous
subscriber mode requires no integration or static configuration of the IP addresses used. Instead,
ranges of IP addresses are configured (on the SCE Platform), for which the system will
dynamically create anonymous subscribers (using the IP address as the subscriber-name).

Use anonymous subscriber mode when no subscriber-differentiated control or subscriber-level
quotas tracking is required, and when analysis on an IP level is sufficient.

Note The total number of concurrently active anonymous subscribers is identical to the total number of
concurrently active subscribers, and is therefore subject to a similar license.

Anonymous subscriber mode can support the assignment of different service configuration to
different subscribers by ensuring that subscribers are assigned IP addresses from different pools.
This uses the SCE Platform’s service configuration -template function, through which the system
can be instructed to assign a different package to different anonymous subscribers, depending on
the range from which their IP address is assigned.

Note Anonymous subscriber mode assumes that the IP-address recycling time (the time between a
subscriber’s logging off the network and the subscriber’s IP address being reassigned) is sufficiently
long. Normally, this is the case in broadband networks (Cable, DSL).

Static Subscriber-Aware Mode
SCAS BB supports a mode of operation in which incoming IP addresses can be statically bound
and grouped into subscribers. With this binding, traffic from/to a defined subscriber can be
controlled as a group (for example, to limit the P2P traffic to/from that subscriber), in addition to
the usage reports that can be provided for that range.

Static subscriber-aware mode supports cases in which the entity using a particular IP address or
address-range does not change dynamically. This includes situations such as:

• Deployment in environments where a subscriber’s IP address or addresses do not change
dynamically via DHCP, RADIUS, etc.

• Deployment in which a group of subscribers that use a common pool of IP addresses (such as
all those served by a particular CMTS, BRAS, etc.) are to be managed together (to provide a
shared bandwidth to the entire group).

The system supports the definition of static-subscribers, directly on an SCE Platform, and does
not require external management software (SM). This is achieved by using the device’s CLI, and
by defining the list of subscribers, their IP addresses, and associated package (support is provided
for interactive configuration, as well as for import/export operations).

Chapter 6 Subscriber Integration

 Dynamic Subscriber-Aware Mode and smartSUB Manager (SM)

 SCAS for Broadband API Programmer's Guide

6-4 OL-7207-01

Dynamic Subscriber-Aware Mode and smartSUB Manager (SM)
When operating in dynamic subscriber aware mode, the SCE Platform is populated by subscriber
information (OSS ID and service configuration) that is dynamically bound to the (IP) address
currently in use by the subscribers. In this mode, the smartSUB Manager (SM) must be used for
performing device provisioning with the subscriber information. The SM is a server application
that maintains the above association, and provisions it to SCE Platforms in real time.

SM General Functions
The SM supports up to 500,000 subscribers and up to 20 SCE Platforms. Cisco also provides a
sizing tool to assist in the selection of the correct platform, based on the size and type of the
deployment.

The SM is a Java-based server application, and can be installed on supported Solaris platforms
(CD-ROM installable version). Configuration and management of the SM is performed using
command line utilities (CLU) and configuration files that are installed on the target platform as
part of the module’s installation.

The SM makes use of a third-party database called TimesTen (an embedded, in-memory
commercial database), as its high performance back end.

Pull-mode
By making use of SE-SM pull mode, the SM can dynamically populate SCE Platforms with
subscriber information, when network activity from the subscriber address is detected in a
particular device. This is useful for the following:

• More than the supported number (40,000) of subscribers are using the same link, but with no
more than 40,000 concurrently active. In this case, the pull-mode functionality is used to
cache-in and cache-out subscribers from an SCE Platform, as their activity is detected.

• In topologies in which the actual device through which a subscriber will flow cannot be
deduced from the IP-address assignment process in a static fashion. For example, when
multiple SCE Platforms are deployed in parallel (using a L3-switch to ensure that the traffic to
a single IP address always uses the same path), as in the following diagram.

Chapter 6 Subscriber Integration

Dynamic Subscriber-Aware Mode and smartSUB Manager (SM)

SCAS for Broadband API Programmer's Guide

OL-7207-01 6-5

Figure 6-1: Dynamic Subscriber Aware in Pull Mode

Each time an SCE Platform detects traffic from an IP address for which it does not know the
subscriber, it queries the SM for information (note that a platform can be instructed to perform
pull operations from specific incoming IP address ranges).

When a subscriber is removed from an SCE Platform, its long-term state (used-quotas) is stored in
the SM for future use.

Note that in this topology, the same subscriber can be served by different SCE devices at different
points in time (depending on the IP address assigned).

Also, note that a redundant SCE Platform can be set up to take over if one of the primary ones
fails (N+1 redundancy). The pull mechanism ensures that the redundant SCE Platform will be
populated with the relevant subscribers.

Subscriber State
The SM and its SCE Platform also share subscriber state information. When a subscriber logs out
(or is cached out of an SCE Platform), part of the process involves sending its state information
(for example, quotas) to the SM for long-term storage. When the subscriber logs in again (or
traffic from the subscriber’s assigned IP is once again detected), this information is then
provisioned to the SCE Platform currently being used (which could be a different device).

Chapter 6 Subscriber Integration

 Dynamic Subscriber-Aware Mode and smartSUB Manager (SM)

 SCAS for Broadband API Programmer's Guide

6-6 OL-7207-01

Subscriber-Integration: PRPC Protocol
The SM supports a subscriber-integration protocol (PRPC), and additional tools and ready-made
components for simplifying subscriber integration in various environments.

The PRPC protocol is used for communicating subscriber information to the SM. Integration
toolkits are available for both C/C++ and Java.

The PRPC protocol is used for communicating subscriber information to the SM. Integration
toolkits are available for both C/C++ and Java.

Generic SM APIs are provided for Java and C (see the smartSUB Manager User Guide). When
using these APIs with the SCAS BB, the user has to specify the (SCAS-specific) name for the
packageId property, which holds the subscriber’s package-id.

Following is an example of using the SM Java API with SCAS BB:
// subscriber-id
String subscriberName = "JerryS";

// mappings
String[] mappings = new String[]{ "80.179.153.29" };
short[] mappingTypes = SMApiConstants.ALL_IP_MAPPINGS;

// properties
String[] propertyKeys = new String[]{ "packageId" };
String[] propertyValues = new String[]{ "0" };

// other settings
String domain = "subscribers";
boolean isMappingAdditive = false;
int autoLogoutTime = -1; // never

// login
smApi.login(subscriberName, mappings, mappingTypes, propertyKeys,
 propertyValues, domain, isMappingAdditive, autoLogoutTime);

Subscriber-Integration: CNR (DHCP) Plug-in
To facilitate and simplify subscriber integration in cable environments that use Cisco’s Network
Registrar DHCP server, Cisco provides an out-of-the-box CNR plug-in. By using the PRPC
protocol, this plug-in communicates IP address lease information to the Service Control SM, and
synchronizes with the SM the IP addresses assigned to the CPEs by the CNR DHCP server.

CNR versions are supported for both Windows and Solaris platforms.

SCAS for Broadband API Programmer's Guide

OL-7207-01 7-1

This chapter describes the External Quota Provisioning (QP) API.

This chapter contains the following sections:

• External Quota Provisioning 7-2

• Quota Provisioning Life Cycle 7-3

• Limitations 7-4

• Installing the External Quota Provisioning APIs 7-4

• QP API (Java) Methods 7-5

• QP API (Java) Code Examples 7-8

• QP API (C) Methods 7-9

• QP API (C) Code Examples 7-11

• Error Codes and Exception Handling 7-14

C H A P T E R 7

Quota Provisioning API

Chapter 7 Quota Provisioning API

 External Quota Provisioning

 SCAS for Broadband API Programmer's Guide

7-2 OL-7207-01

External Quota Provisioning
External Quota Provisioning is a quota enforcement mechanism to be used by Service Control
partners for creating application-aware quota and volume-based services. This mechanism allows
subscriber-level quota provisioning by an external entity, and is meant to be used in integration
with vendors of subscriber management platforms.

For further description of external quota provisioning, see the Service Control Application Suite
for Broadband User Guide.

The Quota Provisioning API (QP API) is an extension to Service Control SM API, and comes in
both C/C++ and Java versions. It relies on the SM API’s ability to connect to an SM, and to add
and configure a subscriber. The QP API adds the ability to set quota (setSubscriberQuota), to add
additional quota (addSubscriberQuota), and to read the remaining quota to/from a subscriber’s
quota-buckets (getRemainingSubscriberQuota).

For further description of the SM API, see the C/C++ API for SM Guide and the Java API for
SM Guide.

Using these capabilities, OSS-systems can develop logic to control subscribers usage of traffic
according to applications/services using such service models as prepaid, quota-based
consumption, etc.

Service Configuration for External Quota Provisioning
There are several guidelines that must be followed when creating the SCAS BB service
configuration (PQB) to applied to the system in order for the QP API to be effective:

• Packages:

• The Package Quota Management Mode should be set to "External".

• When configuring buckets, the appropriate bucket type should be set. Available types are
"Volume (L3 KBytes)" or "Number of Sessions".

• In the usage limits definitions for the appropriate service rules, the appropriate buckets
should be selected. Service traffic consumes quota from the selected buckets. The rule's
breach handling action can be used to configure the level of service to assign to this traffic
while the bucket is depleted.

• RDRs: To activate the generation of related RDRs, the following RDRs must be enabled in
the RDR Settings:

• Quota Breach RDR

• Remaining Quota RDR

• Quota Threshold RDR

For more information about Packages, Rules and RDR configuration, see the Service Control
Application Suite for Broadband User Guide.

Chapter 7 Quota Provisioning API

Quota Provisioning Life Cycle

SCAS for Broadband API Programmer's Guide

OL-7207-01 7-3

Quota Bucket States
This section describes the quota buckets states possible while a subscriber is consuming quota
from it and while additional quota is provisioned to it through the QP API.

There are three possible bucket states:

• Above threshold: While the bucket is above threshold, quota is consumed, and
remaining quota is reported in Remaining Quota RDRs.

• Below threshold: When remaining quota goes below threshold, a Quota Threshold RDR
is generated. Performing add/set quota operations in response to this RDR may put the
bucket above threshold again, before it is depleted. Remaining quota is reported in
Remaining Quota RDRs as quota is consumed.

• Depleted : The bucket is depleted when quota goes below 0. In this case the bucket will
maintain quota deficit, or "negative" remaining quota, which is reported in Remaining
Quota RDRs. Entering "depleted" state causes the generation of Quota Breach RDR, and
the rule's breach handling action, if defined, is applied to this traffic. Performing add/set
quota operations at this point may put the bucket out of depleted state.

Note that the quota amount in un-initialized buckets is 0, which means that the first time quota is
consumed, the bucket would be depleted.

Quota Provisioning Life Cycle
This section describes the life cycle of quota provisioning operations and of a subscriber's quota
state, as the subscriber logs in and out, and generates network traffic.

The important thing to understand about quota provisioning operations is that although the
relevant QP API methods queue the requested Add or Set operation and return immediately, the
actual quota modification takes place only when the subscriber generates traffic; that is, when the
subscriber performs some network activity. Therefore, during the time from when the external
provisioning system requests a quota modification until the time the modification actually takes
place, the subscriber's state does not reflect the quota modification. Thus, reading the remaining
quota of the subscriber during that in-between time will show values that do not take into account
the most recent modification.

The following sequence diagram shows an example of how quota modifications take place as a
result of quota provisioning operations and subscriber network activity.

Step 1 When the external quota provisioning system performs a quota modification operation (in this
case, a set-quota operation), the modification is queued but not yet handled (1 in diagram).

Step 2 Therefore, when the external quota provisioning system reads the remaining quota, it still sees the
old value before the modification (2 in diagram).

Step 3 The modification takes place only when the subscriber generates traffic (3 in diagram).

Step 4 Now, when the external quota provisioning system reads the remaining quota, it sees the updated
value (4 in diagram).

Chapter 7 Quota Provisioning API

 Limitations

 SCAS for Broadband API Programmer's Guide

7-4 OL-7207-01

Figure 7-1: Quota Provisioning Life Cycle

Limitations
• Positive quota balance per bucket is limited to 256 GBytes.

Attempting to grant a subscriber additional quota, exceeding the 256 GBytes limit, will not
generate an error, but the resulting quota balance will turn negative! Therefore, as a user you
should be aware to the manner you use the add-quota command.

Similarly, subscribers can have a quota deficit of up to 256 GBytes per bucket. When a
subscriber is in deficit in one of his buckets that bucket has a negative balance value, which
can be as low as -256 GBytes. Beyond this negative value the system stops charging the over-
consumed bucket, and the balance will remain -256 GBytes.

• Issue with 256 successive set-quota operations.

Similar to the previous bullet, setting quota balance via the set-quota command should not be
invoked excessively if a subscriber is logged-off or inactive. To be precise, 256 successive
updates of a quota bucket via the set-quota command while the subscriber is inactive will not
generate an error but the bucket's balance will not be correct.

Installing the External Quota Provisioning APIs
The C and Java QP APIs are packaged in separate files, whose contents are as follows:

• qp-c-api-dist.tar.gz

• Documentation

Chapter 7 Quota Provisioning API

QP API (Java) Methods

SCAS for Broadband API Programmer's Guide

OL-7207-01 7-5

• Include files

• Solaris SO file

• WinNT DLL and LIB files

• qpapi.jar

• qpapi-javadoc.zip

To install, first install the SM API, and then repeat the same installation steps with the QP API.

To compile and run, follow the steps of compiling and running the SM API, and add the QP API
files to the PATH/Class-path as well. If you are using the Java API include um_core.jar
in your classpath. The um_core.jar is contained within the SCAS BB package.

QP API (Java) Methods
This section lists the methods of the blocking QP API for Java. The signature of each method is
followed by a description of its input parameters and its return values.

addSubscriberQuota

Syntax
void addSubscriberQuota(String subscriberName,
 int[] quota)
throws QPApiException, ConnectionDownException

Description
Adds the specified quota to the current quota in the quota buckets of the specified subscriber.

Parameters
subscriberName: Subscriber ID.

quota: An array of 16 quota values (L3 kilobytes or number of sessions) to be added to the
current quota of the specified subscriber's quota buckets.

Return Value
None.

Chapter 7 Quota Provisioning API

 QP API (Java) Methods

 SCAS for Broadband API Programmer's Guide

7-6 OL-7207-01

addSubscriberQuota

Syntax
void addSubscriberQuota(String subscriberName,

 int bucketNum

 int[] quota)

throws QPApiException, ConnectionDownException

Description
Adds the specified quota to the current quota in the specified quota bucket of the specified
subscriber

Parameters
subscriberName: Subscriber ID.

bucketNum: Bucket Number

quota: Quota value (L3 kilobytes or number of sessions) to be added to the current quota of the
specified subscriber's quota bucket.

Return Value
None.

getSubscriberQuota

Syntax
int[] getSubscriberQuota(String subscriberName)
throws QPApiException, ConnectionDownException

Description
Gets the remaining quota in each quota bucket of the specified subscriber.

Parameters
subscriberName: Subscriber ID.

Return Value
An array of the remaining quota values (L3 kilobytes or number of sessions) in each quota-bucket
of the specified subscriber.

Chapter 7 Quota Provisioning API

QP API (Java) Methods

SCAS for Broadband API Programmer's Guide

OL-7207-01 7-7

setSubscriberQuota

Syntax
void setSubscriberQuota(String subscriberName,
 int[] quota)
throws QPApiException, ConnectionDownException

Description
Sets the specified quota in the quota buckets of the specified subscriber.

Parameters
subscriberName: Subscriber ID.

quota: An array of 16 quota values (L3 kilobytes or number of sessions) to which the specified
subscriber's quota buckets should be set.

Return Value
None.

Chapter 7 Quota Provisioning API

 QP API (Java) Code Examples

 SCAS for Broadband API Programmer's Guide

7-8 OL-7207-01

QP API (Java) Code Examples
This section presents the following code examples using the QP API (Java):
import java.util.Arrays;
import com.cisco.apps.scas.api.QPApiException;
import com.cisco.apps.scas.api.QPBlockingApi;
import com.cisco.management.framework.client.ConnectionDownException;
/**
 * External Quota Provisioning Example
 **/
public class ExternalQPExample {

 public static final String SM_ADDRESS = "10.1.12.65";

 static public void main(String[] args) throws Exception{

 QPBlockingApi qpBlockingApi = null;
 try{
 //instantiate api and create a connection
 qpBlockingApi = new QPBlockingApi();
 qpBlockingApi.connect(SM_ADDRESS);

 int[] defaultQuota = new int[16];

 //provision each bucket of subscriber "sub1"
 //with 1000 KBytes or 1000 Sessions.
 Arrays.fill(defaultQuota,1000);
 qpBlockingApi.setSubscriberQuota("sub1",
defaultQuota);

 //dd to bucket 2 of subscriber "sub1"
 //with 500 KBytes or 500 Sessions.
 qpBlockingApi.addSubscriberQuota("sub1", 0,
500);

 //get "sub1" remaining quota - this method

Chapter 7 Quota Provisioning API

QP API (C) Methods

SCAS for Broadband API Programmer's Guide

OL-7207-01 7-9

 //invocation will work only if the
 //subscriber is logged in.
 //The remaining quota will reflect
 //the last two modifications if
 //subscriber has generated traffic
 int[] remainingQuota =

qpBlockingApi.getRemainingSubscriberQuota("sub1");
 printRemainingQuota(remainingQuota);

 }catch(QPApiException e){
 System.out.println("Error Code is: " +
e.getCode());
 System.out.println("Error Message is: " +
e.getMessage());
 }catch(ConnectionDownException e){
 System.out.println("Error due to connection
failure: " + e.getMessage());
 }catch(IllegalStateException e){
 System.out.println("Error due to connection
failure: " + e.getMessage());
 }finally{
 if(qpBlockingApi != null &&
qpBlockingApi.isConnected())
 qpBlockingApi.disconnect();
 }

 System.exit(0);
 }

 private static void printRemainingQuota(int[] remainingQuota)
{
 for (int bucketIdx = 0;
 bucketIdx < remainingQuota.length;
 bucketIdx++) {
 System.out.println(
 "bucketIdx="
 + bucketIdx
 + ",remainingQuota="
 +
remainingQuota[bucketIdx]);
 }
 }

}

•

QP API (C) Methods
This section lists the methods of the blocking QP API for C. The signature of each method is
followed by a description of its input parameters and its return values.

Note The QP API C functions have the prefix "QPB_" added to their names. The first parameter in all QP
API C functions is argApiHandle, which is an API handle created by the calling the init function.

Chapter 7 Quota Provisioning API

 QP API (C) Methods

 SCAS for Broadband API Programmer's Guide

7-10 OL-7207-01

addQuota

Syntax
ReturnCode* QPB_addQuota (QPB_HANDLE argApiHandle, char* argName, int*
argQuotas)

Description
Adds the specified quota to the current quota in the quota buckets of the specified subscriber.

Parameters
argName: Subscriber ID.

argQuotas: An array of 16 quota values (L3 kilobytes or number of sessions) to be added to the
current quota of the specified subscriber's quota buckets.

Return Value
A pointer to a ReturnCode structure.

getRemainingQuota

Syntax
ReturnCode* QPB_getRemainingQuota (QPB_HANDLE argApiHandle, char* argName)

Description
Gets the remaining quota in each quota bucket of the specified subscriber.

Parameters
argName: Subscriber ID.

Return Value
A pointer to a ReturnCode structure holding an integer array of the remaining quota values (L3
kilobytes or number of sessions) in each quota-bucket of the specified subscriber.

setQuota

Syntax
ReturnCode* QPB_setQuota (QPB_HANDLE argApiHandle, char* argName, int*
argQuotas)

Description
Sets the specified quota in the quota buckets of the specified subscriber.

Chapter 7 Quota Provisioning API

QP API (C) Code Examples

SCAS for Broadband API Programmer's Guide

OL-7207-01 7-11

Parameters
argName: Subscriber ID.

argQuotas: An array of 16 quota values (L3 kilobytes or number of sessions) to which the
specified subscriber's quota buckets should be set.

Return Value
A pointer to a ReturnCode structure.

QP API (C) Code Examples
This section presents the following code examples using the QP API (C):

• Setting a subscriber’s quota, adding quota, and getting the remaining quota.

Chapter 7 Quota Provisioning API

 QP API (C) Code Examples

 SCAS for Broadband API Programmer's Guide

7-12 OL-7207-01

#include <stdio.h>
#include "QpApiBlocking_c.h"

void onExampleDisconnect()
{
 printf("*** DISCONNECTED ***\n");
}

int example(char* argSmAddress)
{
 // init
 printf("initializing\n");
 QPB_HANDLE api;
 api = QPB_init(10,0,20000,10,30);
 if (api == NULL) {
 printf("init failed\n");
 return -1;
 }
 QPB_setName(api,"qp-example");

 // set a disconnect-listener
 QPB_setDisconnectListener(api,onExampleDisconnect);

 // connect
 printf("connecting\n");
 int cnt = 0;
 while (QPB_connect(api,argSmAddress,14374) == false) {
 if (cnt++ > 10) {
 printf("connect failed, too many reconnects, aborting\n");
 return -1;
 }
 }

 // quota operations

 // prepare a quota bucket array [100, 200, 300,...]
 int quotas[16];
 for (int i = 0; i < 16; ++i) {
 quotas[i] = (i+1)*100;
 }

 // set the quota to subscriber "subs1"
 printf("setting quota\n");
 ReturnCode* rt;
 rt = QPB_setQuota(api,(char*)"subs1",quotas);
 if (isReturnCodeError(rt)) {
 printf((char*)"set-quota failed\n");
 printReturnCode(rt);
 return -1;
 }
 freeReturnCode(rt);

 // add quota to subscriber "subs2"
 printf("adding quota\n");
 rt = QPB_addQuota(api,(char*)"subs2",quotas);
 if (isReturnCodeError(rt)) {
 printf((char*)"add-quota failed\n");
 printReturnCode(rt);
 return -1;
 }

Chapter 7 Quota Provisioning API

QP API (C) Code Examples

SCAS for Broadband API Programmer's Guide

OL-7207-01 7-13

 freeReturnCode(rt);

 // getting remaining quota of subscriber "subs3"
 // this method invocation will work only if the subscriber is logged in.
 // the remaining quota will reflect recent modifications if the
 // subscriber has generated traffic

 printf("getting remaining quota\n");
 rt = QPB_getRemainingQuota(api,(char*)"subs3");
 printReturnCode(rt);
 if (isReturnCodeError(rt)) {
 printf("get-remaining-quota failed\n");
 return -1;
 }
 freeReturnCode(rt);

 // disconnect
 if (QPB_disconnect(api) == false) {
 printf("disconnect failed\n");
 return -1;
 }
 QPB_release(api);

 return 0;
}

int main(int argc, char* argv[])
{
 char* smAddress = (char*)"10.1.12.82";
 printf("SM address: %s\n",smAddress);

 if (example(smAddress) < 0) {
 printf("example failed\n");
 return -1;
 }
 return 0;
}

Chapter 7 Quota Provisioning API

 Error Codes and Exception Handling

 SCAS for Broadband API Programmer's Guide

7-14 OL-7207-01

Error Codes and Exception Handling
Quota Provisioning API Error Codes

The following table summarizes the list of error codes that the Quota Provisioning API can
generate. Note that when using the Quota Provisioning API in conjunction with the SM API, you
may also receive error codes from the latter. Please refer to Appendix A of the smartSUB
Programmer's Guide for a full list of those error codes

Table 7-1 Quota Provisioning API Error Codes

Error Code Description Recommended Operation /
Comments

40,000 Illegal Argument Exception:
The value of the quota
provided is illegal (for
example: too large).

Verify that all quota values
passed as arguments are valid

40,002 Subscriber Not Logged in
Exception: At attempt to
execute an operation on a
subscriber that is not logged
in has occurred.

Retry after the subscriber is
logged into a SCE device.

40,003 Unknown Exception: An
unexpected error has
occurred.

Consult customer-support.

40,004 Time Out Exception:
Happens if the SM database is
locked for too long (Internal
Error).

Consult customer-support.

40,030 Inactive Subscriber
Exception: Happens if a
subscriber context can not be
located unexpectedly (Internal
Error)

Consult customer-support.

Note that not all errors are applicable to all QP API methods.

Managing Exceptions in the Java API
The Java API throws three types of exceptions:

• ConnectionDownException: Occurs whenever an established connection to the SM goes
down in the middle of an operation.

• IllegalStateException: May occur when the connection to the SM fails unexpectedly.

• QPApiException: For any other error.

When catching an QPApiException, use qpApiException.getCode() and compare to the Error
Code column in the table above (or from Appendix A of the SM documentation). Use
qpApiException.getMessage() to receive a string error message.

Chapter 7 Quota Provisioning API

Error Codes and Exception Handling

SCAS for Broadband API Programmer's Guide

OL-7207-01 7-15

Managing Error Codes in the C/C++ API
Any function call that fails returns an error code. Use that error code and compare to the Error
Code column in the table above (or from Appendix A of the SM documentation).

SCAS for Broadband API Programmer's Guide

OL-7207-01 8-1

This chapter describes the various ways of using the Service Control Reporter Command Line
Interface for executing the Service Control reporter application, including the syntax,
switches, and options.

This chapter contains the following sections:

• Overview of Reporter Command Line Interface 8-1

• Syntax and Usage 8-1

Overview of Reporter Command Line Interface
The Reporter Command Line Interface is based on a command line application that complements
the functionality of the SCASl Reporter GUI. It can be run either as an executable, or as a CGI
script. The Service Control Reporter Command Line Interface provides capabilities and flexibility
beyond that of its SCAS Reporter GUI counterpart, and can be integrated into third-party
applications to generate usage and statistical based output.

Syntax and Usage
The SCAS Reporter is an application that can be executed in the following ways:

• Command-Line - The command-line version accepts input passed as parameters.

• Command-File - The command-file version reads its input from a file containing command-
line parameters and can be executed as a batch file.

• Spawned-Executable - The program is embedded in an application from which it is spawned.
The application takes care of dynamically building the string to be passed as a parameter to
the SCAS Reporter.

In addition, the SCAS Reporter can be called from:

• CGI BIN Directory, ISAPI Browser, and NSAPI Browser - The SCAS Reporter can be
called from a CGI BIN directory, or from an ISAPI- or NSAPI-compliant browser. The
application returns its output in the form of HTML, which is directed to the browser for
viewing. If an error is detected an appropriate error message is displayed.

C H A P T E R 8

Reporter Command Line interface

Chapter 8 Reporter Command Line interface

 Syntax and Usage

 SCAS for Broadband API Programmer's Guide

8-2 OL-7207-01

Command-Line Usage
Following is the syntax of the command line for invoking the SCAS Reporter application:
reporter { [-r report-id] | [-n report-name] | [-i report-index] }
 -f [report-format] -k key=value –e [CON]
 -l user-name\password@host-machine
 [drive:][path] <report-filename>

Command-Line Syntax
Following are switches in the command line for invoking the SCAS Reporter application:

• Switches –f, –k, and –e are optional.

• One, and only one, of the -r, -n, or -i switches must be specified.

• The other parameters are required.

Command-Line Options
The following table describes the options of the command line for invoking the SCAS Reporter
application:

Table 8-1 Command Line Options for SCAS Reporter Application

Option Action by SCAS Reporter Comments

-r <report-id> Generates report using report-id. Use this parameter when
generating a report from one
of the predefined templates.

-n <report-name> Generates report using report-name. Use this parameter when
generating a report from one
of the personalized templates.
The name is matched against
the saved report names. Report
names are case insensitive.

-i <report-index> Generates report using report-index. Use this parameter when
generating a report from one
of the personalized templates.

-f [report-format] Generates report as a chart or table in the
specified report-format. If report-format
is omitted, the default format is used.
Default formats are noted by an asterisk.

Table Format:
JPG
GIF *
HTM

Chart Format:
CSV*
HTM
XLS

Chapter 8 Reporter Command Line interface

Syntax and Usage

SCAS for Broadband API Programmer's Guide

OL-7207-01 8-3

Option Action by SCAS Reporter Comments

-k key=value Override predefined key with value
specified.

-l user-name\password
@hostname

(Required) To log in using the
user-name\password@hostname machine.

Use the user-name and
password of the workstation
hosting the reporter
executable.

<report-filename> (Required) Name of file to which to direct
output.

If the filename already exists,
the original file is overwritten.

-e [CON] Redirects output (messages and errors) to
an error message file. If the optional CON
switch used is a console window and is
open, error messages are redirected there.

Since reporter is a Win32
application, stderr is redirected
to an error message file.

Command-File Usage
Following is the command for invoking the SCAS Reporter application from a command file:
reporter@[drive:][path][command-file]

Command-File Syntax
Following is the syntax for invoking the SCAS Reporter application from a command file:

• The executable name is followed by an “at” sign (@), an optional drive and path, and a
required name of a command file to be used for input.

• Each line in the command file contains a different command for generating a report.

• Lines beginning with a semicolon (;) are regarded as comment lines and ignored.

• Backslashes (\) can be used to split long lines. Place the backslash at the end of each line to be
concatenated, except the last line.

SCAS for Broadband API Programmer's Guide

OL-7207-01 1

A
Anonymous subscriber mode
A mode of the solution in which the system
monitors traffic and assigns service
configuration automatically based on to the
individual's IP address used on its
subscriber-side. This mode can be used to
control a subscriber's traffic anonymously,
without integrating the system with an OSS
system. In this mode, the subscribers defined
in the system are anonymous and are
distinguished only by their IP address or
VLAN ID.

C
Collection Manager (CM)
A software application that is responsible for
collecting RDRs from the SCE Platforms,
processing them, and preparing them for
reports.

Command Line Interface (CLI)
One of the management interfaces to the
SCE Platform. It is accessed through a
Telnet session or directly via the console
port on the front panel of the SCE Platform.

D
Downstream traffic
Traffic entering the SCE Platform from the
network side (that is, toward the
subscribers).

Dynamic Signature
A dynamic signature is a signature that can
be loaded to a running application, and once
loaded the application knows to identify the
protocol associated with this signature.

Dynamic Subscriber-aware mode
A mode in which the actual subscriber ID is
associated with an IP address when the
subscriber logs onto the network and is
assigned an IP address. To operate in this
mode, the system must be integrated with
the OSS system that assigns IP addresses to
subscribers (typically based on RADIUS or
DHCP).

F
Filter Rules
The part of the Service Configuration that
lets you direct the SCE Platform to ignore
some types of transactions based on Layer 3
and Layer 4 properties, and transmit them
unchanged, bypassing the solution service.

G
Global Controllers
Global Controllers are used for controlling
the total bandwidth percentage for a selected
protocol or package for all subscribers. See
also Subscriber BW Controllers.

Glossary of Terms

 Glossary of Terms

 SCAS for Broadband API Programmer's Guide

2 OL-7207-01

I
Inline connection mode
The SCE Platform physically resides on the
data link between the subscriber side and the
network side, and can both receive and
transmit traffic, permitting traffic control as
well as monitoring.

L
List
An IP address range or list of web addresses
used to define a service.

M
Monitoring Reports
Bandwidth, volume and session usage
reports generated by the SCAS Reporter at
subscriber, package, and global granularity.

N
Network-initiated transactions
Transactions that were initiated by a host, on
the network side, toward a subscriber.

P
Package
A collection of business policy rules,
defining access levels to various services,
charging parameters, and traffic control
actions to be taken upon certain events.
Subscribers are assigned packages (plans)
that determine how their network
transactions are controlled and charged.

PQI (Service Control Installation)
File
An application package file that is installed
on the SCE Platform or associated software
modules.

Q
Quota
A (subscriber's) limit for a specific metric,
such as bandwidth or volume.

R
RDR (Raw Data Record)
A data record produced by the SCE Platform
that reports on events in the traffic. RDRs
produced by the SCE Platform are sent to
the Collection Manager and then stored in
the Collection Manager database or
forwarded to third-party systems. The RDR
typically contains quota (see Quota) requests
or reports service usage.

Real-time subscriber usage
monitoring
Subscribers which are monitored in detail
and usage information is frequently reported
by the SCE device to facilitate detailed
reports.

Receive-only connection mode
The SCE Platform does not reside physically
on the data link, and therefore can only
receive data and not transmit.

This mode has traffic monitoring capability
only.

S
SCAS BB Console
The user interface used for controlling the
SCAS system, used to create, modify, and
apply the service configuration.

SCE (Service Engine) Platform
The Service Control purpose-built network
element for service control. This hardware
device is capable of performing deep packet
analysis at wire speed, and control
subscribers’ traffic based on business policy.

Glossary of Terms

SCAS for Broadband API Programmer's Guide

OL-7207-01 3

Service
A value-added offering given by the service
provider to its subscribers on top of its
access network.

For each such commercial service the
providers offer to their subscribers, a
corresponding service is defined in the
Encharge solution for classifying and
identifying network transaction associated
with the service, reporting on its usage, and
controlling its traffic according to the
business policy.

Service Configuration
The definition of services within the
Encharge solution, the mapping of network
transactions to their corresponding services,
and the behavior of the SCE Platform on
them. The service configuration includes the
definition of Services, Packages, Bandwidth
Controllers, Filter Rules, etc.

Service Control Application
An SML program that determines how the
SCE Platform operates.

Service Rule
A Service is assigned to a Package by
defining a Service Rule for the Package.

Session (also called Transaction)
An instance of communication between
network hosts. A precise definition of a
session is application protocol (Layer 7)
dependent.

Signature
A set of parameters that uniquely identify a
protocol.

SLI (SML Loadable Image) File
An SLI file is a software package (part of an
SCAS solution) that contains the SML
application that is loaded onto a SCE
Platform. The SML application determines
the behavior of the SCE Platform. Different
SCE Platforms can have different SML
applications, even when they are within the
same POP. (Operators do not need to access
the SLI file.)

smartSUB Manager (SM)
A middleware software component used in
cases where dynamic binding of subscriber
information and service configurations is
required. The SM manages subscriber
information and provisions it in real time to
multiple SCE Platforms. The SM can store
subscriber service configurations
information internally, and act as a state-full
bridge between the AAA system (for
example, RADIUS and DHCP) and the SCE
Platforms.

Static Subscriber-aware mode
A mode in which a specific IP address is
bound to each subscriber. This mode is
useful when controlling enterprise
customers, or when controlling subscribers
in groups of predefined subnets (such as
users of a specific CMTS/BRAS).

Subscriber
The generic term used to refer to the
managed entity for which a service
configuration is enforced, and usage is
monitored, by an SCAS solution. A
subscriber can be defined as an individual IP
address, or ranges of IP addresses or
VLANs. The system supports different
modes of operations including: subscriber-
less mode (all control is performed
globally), anonymous subscribers mode, and
dynamic and static subscriber-aware modes.

 Glossary of Terms

 SCAS for Broadband API Programmer's Guide

4 OL-7207-01

Subscriber BW Controllers
(Bandwidth Controllers)
Subscriber Bandwidth Controllers (BW
Controllers) controls traffic bandwidth for
an individual subscriber. See also Global
Controllers (on page 4-8).

Subscriber-initiated transactions
Transactions that are initiated by a host of a
subscriber.

Subscriber-less mode
A mode of the solution that requires no
integration, so that the SM component is not
required. This mode is not influenced by the
number of subscribers or inbound IP
addresses, therefore the total amount of
subscribers utilizing the monitored link is
unlimited from the perspective of the SCE
Platform. It is the choice for sites where
control and level analysis functions are
required only at a global device resolution.

T
Time Based Rule
An added-value Service Rule that can be
attached to either a Total Traffic Rule or to a
Service Rule. It is listed as a sub-rule in the
Service Rule table. A time based rule is
applied for one of the user-defined Weekly
Time Frames.

Traffic-Discovery Reports
Statistics reports on network activity based
on transaction usage records.

Transaction (also called Session)
An event in traffic that is recognized by the
application and is distinguished according to
its L3, L4, or L7 characteristics. Different
protocols may have different transaction
types.

U
Upstream traffic
Traffic entering the SCE Platform from the
subscriber side.

SCAS for Broadband API Programmer's Guide

OL-7207-01 1

A
Adding a Service to Service Configuration •

5-13
Adding Elements to a List Array • 5-8
Adding Ports to Protocols • 5-10
addQuota • 7-10
addSubscriberQuota • 7-5, 7-6
Aggregation • 5-18
Anonymous subscriber mode • 2-4, 1
Anonymous Subscriber Mode • 6-3
Audience • v

B
Bandwidth Controller • 5-19
Block and Redirect • 5-21
Breach Reports • 5-19
Breaches • 5-16

C
Cisco TAC Website • viii
Collection Manager • 3-4
Collection Manager (CM) • 1
Command Line Interface (CLI) • 1
Command-File Syntax • 8-3
Command-File Usage • 8-3
Command-Line Options • 8-2
Command-Line Syntax • 8-2
Command-Line Usage • 8-2
Connecting to the SCE Platform • 5-3
Creating a Service • 5-12
Creating and Naming Packages • 5-16

D
Data Collector • 3-4
Default and Non-Default Time Frames • 5-

20
Defining Protocols • 5-9

Defining Service Elements • 5-13
Defining Service Rules • 5-16
Description • 7-5, 7-6, 7-7, 7-10
Determining the Type of a List • 5-8
Document

content • vii
Document Content • vii
Document Conventions • vii
Downstream traffic • 1
Dynamic Signature • 1
Dynamic Signatures • 4-5
Dynamic Subscriber-aware mode • 1
Dynamic Subscriber-Aware Mode and

smartSUB Manager (SM) • 6-4

E
Error Codes and Exception Handling • 7-14
Essential Components • 3-2
Example - Adding a Service and Applying a

Service Configuration • 5-22
Example - FTP Service Rule • 5-17
External Quota Provisioning • 7-2

F
Filter Rules • 1
Flat Files • 3-6
Flow of Information • 3-7

G
getRemainingQuota • 7-10
getSubscriberQuota • 7-6
Global Controllers • 4-8, 1

I
Importing, Exporting, and Creating Service

Configurations • 5-6
Including the SCAS Libraries • 5-3
Initiating Side • 4-5

Index

 Index

 SCAS for Broadband API Programmer's Guide

2 OL-7207-01

Inline connection mode • 2
Installing the External Quota Provisioning

APIs • 7-4
Integration Factors and Motivation • 3-1
Integration Points • 3-5
Introduction • v

J
JAR files • 5-3

L
Limitations • 7-4
List • 2
Lists • 4-6, 5-7

adding elements to • 5-8
determining type of • 5-8
examples of • 4-3
navigating • 5-8
retrieving • 3-7

Logical Entities • 4-2

M
Managing Error Codes in the C/C++ API •

7-15
Managing Exceptions in the Java API • 7-14
Managing Service Configurations with

SCAS Service Configuration API • 5-4
Monitoring Reports • 2

N
Navigating a List Array • 5-8
Network-initiated transactions • 2

O
Obtaining Technical Assistance • viii
Opening a TAC Case • viii
Overview • 1-1
Overview of Reporter Command Line

Interface • 8-1
Overview of Service Configuration API • 5-

1

P
Package • 2
Packages • 4-7, 5-13

examples of • 4-3
Parameters • 7-5, 7-6, 7-7, 7-10, 7-11
PQI (Service Control Installation) File • 2
Preface • v
Protocols • 4-4, 5-8

defining • 5-13
main aspects of • 4-4

Pull-mode • 6-4
Purpose • vi

Q
QP API (C) Code Examples • 7-11
QP API (C) Methods • 7-9
QP API (Java) Code Examples • 7-8
QP API (Java) Methods • 7-5
Quota • 2
Quota Bucket States • 7-3
Quota Provisioning API • 7-1
Quota Provisioning API Error Codes • 7-14
Quota Provisioning Life Cycle • 7-3

R
RDR (Raw Data Record) • 2
RDRs

triggered by breach • 5-16, 5-19
Real-time subscriber usage monitoring • 2
Receive-only connection mode • 2
Related Publications • viii
Reporter application

command file syntax • 8-3
command file usage • 8-3
command line options • 8-2
command line syntax • 8-2
command line uage • 8-2
syntax and uage • 8-1

Reporter Command Line interface • 8-1
Retrieving a List Array • 5-7
Retrieving and Applying Service

Configurations • 5-5
Return Value • 7-5, 7-6, 7-7, 7-10, 7-11
Rules • 4-6

S
SCAS API Base Classes • 5-2
SCAS BB Licenses • 3-4
SCAS BB Service Configuration APIs • 2-7
SCAS BB Console • 2-6, 2
SCAS Client/Server Connectivity • 5-2
SCAS Reporter Command Line Interface •

3-6
SCE (Service Engine) Platform • 2
SCE Platform • 3-3
SCE Platforms • 2-1, 3-3

triggering RDRs • 3-7
Service • 3

Index

SCAS for Broadband API Programmer's Guide

OL-7207-01 3

Service and Service Elements • 5-11
Service Configuration • 2-5, 4-2, 3

applying • 3-7
components of • 4-3
creating • 5-12
Global Controllers • 4-8
retrieving • 3-7

Service Configuration API • 3-6, 5-1
programming steps for • 5-1

Service Configuration Entities • 4-1
Service Configuration for External Quota

Provisioning • 7-2
Service Configuration Utility • 2-6
Service Configurations • 4-2
Service Control Application • 3
Service Control Application Suite for

Broadband
components • 2-1
console • 2-6
functionality • 3-2
logical entities • 4-2
reporterSee Reporter... • 3-7
solution • 2-1

Service Control Capabilities • 1-2
Service elements

components of • 4-3
defining • 5-13

Service Rule • 3
Services

creating • 5-12
examples of • 4-3

Services and Service Elements • 4-3
Session (also called Transaction) • 3
setQuota • 7-10
setSubscriberQuota • 7-7
Signature • 3
SLI (SML Loadable Image) File • 3
SM • 3-3

general functions • 6-4
SM General Functions • 6-4
smartSUB Manager • 3-3
smartSUB Manager (SM) • 3
Static Subscriber Mode • 2-4
Static Subscriber-aware mode • 3
Static Subscriber-Aware Mode • 6-3
Subscriber • 3
Subscriber BW Controllers • 4-8
Subscriber BW Controllers (Bandwidth

Controllers) • 4
Subscriber integration

CNR (DHCP) plug-in • 6-6
PRPC protocol • 6-6

Subscriber Integration • 6-1
Subscriber modes • 6-1

summary • 2-5, 6-1
Subscriber Modes • 6-1
Subscriber Modes – Summary • 2-5
Subscriber Quota Buckets • 4-9
Subscriber State • 6-5
Subscriber-aware mode – Dynamic

Subscribers • 2-4
Subscriber-initiated transactions • 4
Subscriber-Integration

CNR (DHCP) Plug-in • 6-6
PRPC Protocol • 6-6

Subscriber-less mode • 2-3, 4
Subscriber-less Mode • 6-2
Subscribers and Subscriber Modes • 2-3
Syntax • 7-5, 7-6, 7-7, 7-10
Syntax and Usage • 8-1
System

components • 2-1
System Architecture for Developers • 3-1
System Components • 2-1

T
TAC Case Priority Definitions • ix
The Cisco Service Control Concept • 1-2
The SCE Platform • 1-3
The Service Control Solution • 2-1
Time Based Rule • 4
Traffic-Discovery Reports • 4
Transaction (also called Session) • 4

U
Upstream traffic • 4

	Service Control Application Suite for Broadband API Programmer's Guide Ver. 2.5.5
	Audience
	Purpose
	Document Content
	Document Conventions
	Related Publications
	Obtaining Technical Assistance
	Cisco TAC Website
	Opening a TAC Case
	TAC Case Priority Definitions

	1: Overview
	The Cisco Service Control Concept
	Service Control Capabilities

	The SCE Platform

	2: The Service Control Solution
	System Components
	Subscribers and Subscriber Modes
	Subscriber-less mode
	Anonymous subscriber mode
	Static Subscriber Mode
	Subscriber-aware mode – Dynamic Subscribers
	Subscriber Modes – Summary

	Service Configuration
	SCAS BB Console
	Service Configuration Utility
	SCAS BB Service Configuration APIs

	3: System Architecture for Developers
	Integration Factors and Motivation
	Essential Components
	SCE Platform
	smartSUB Manager
	Collection Manager

	SCAS BB Licenses
	Integration Points
	Service Configuration API
	SCAS Reporter Command Line Interface
	Flat Files

	Flow of Information

	4: Service Configuration Entities
	Logical Entities
	Service Configurations
	Services and Service Elements
	Protocols
	Dynamic Signatures
	Initiating Side
	Lists
	Rules
	Packages
	Global Controllers
	Subscriber BW Controllers
	Subscriber Quota Buckets

	5: Service Configuration API
	Overview of Service Configuration API
	SCAS API Base Classes
	SCAS Client/Server Connectivity
	Including the SCAS Libraries
	Connecting to the SCE Platform

	Managing Service Configurations with SCAS Service Configurat
	Retrieving and Applying Service Configurations
	Importing, Exporting, and Creating Service Configurations
	Lists
	Protocols
	Service and Service Elements
	Packages

	Example - Adding a Service and Applying a Service Configurat

	6: Subscriber Integration
	Subscriber Modes
	Subscriber-less Mode
	Anonymous Subscriber Mode
	Static Subscriber-Aware Mode
	Dynamic Subscriber-Aware Mode and smartSUB Manager (SM)
	SM General Functions
	Pull-mode
	Subscriber State
	Subscriber-Integration: PRPC Protocol
	Subscriber-Integration: CNR (DHCP) Plug-in

	7: Quota Provisioning API
	External Quota Provisioning
	Service Configuration for External Quota Provisioning
	Quota Bucket States

	Quota Provisioning Life Cycle
	Limitations
	Installing the External Quota Provisioning APIs
	QP API (Java) Methods
	addSubscriberQuota
	addSubscriberQuota
	getSubscriberQuota
	setSubscriberQuota

	QP API (Java) Code Examples
	QP API (C) Methods
	addQuota
	getRemainingQuota
	setQuota

	QP API (C) Code Examples
	Error Codes and Exception Handling
	Quota Provisioning API Error Codes
	Managing Exceptions in the Java API
	Managing Error Codes in the C/C++ API

	8: Reporter Command Line interface
	Overview of Reporter Command Line Interface
	Syntax and Usage
	Command-Line Usage
	Command-Line Syntax
	Command-Line Options
	Command-File Usage
	Command-File Syntax

	Glossary of Terms
	Index

